48 research outputs found

    Effect of boron on directionality of pollen tube growth in Petunia and Agapanthus

    Get PDF
    The effect of boron on pollen tube growth was tested using Petunia Juss. styles and the semivivo technique, while Agapanthus L’Hérit. pollen was used for in vitro germination experiments. Petunia pollen tubes protruded only from the cut ends of styles incubated in media containing boron. When styles were incised between the cut end and the pollen tube front and either the cut end or the incision was exposed to a boron-containing medium while the other wounded area was exposed to a boron-free medium, the direction of pollen tube growth was changed. Pollen tubes protruded only from those wounds exposed to a boron-containing medium. When a boron gradient was created on agar strips and Agapanthus pollen was germinated in vitro alternatively on either the end containing a low or a high boron concentration, pollen tubes consistantly grew towards the higher boron concentrations. This is the first demonstration of a possible chemotropic response of pollen tubes to boron

    Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE pacific cross-section intercomparison (GPCI)

    No full text
    International audienceA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ-the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June-July-August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yrECMWFRe-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models. © 2011 American Meteorological Society

    Radiation dose reduction for CT assessment of urolithiasis using iterative reconstruction: A prospective intra-individual study

    Get PDF
    Objective: To assess the performance of hybrid (HIR) and model-based iterative reconstruction (MIR) in patients with urolithiasis at reduced-dose computed tomography (CT). Methods: Twenty patients scheduled for unenhanced abdominal CT for follow-up of urolithiasis were prospectively included. Routine dose acquisition was followed by three low-dose acquisitions at 40%, 60% and 80% reduced doses. All images were reconstructed with filtered back projection (FBP), HIR and MIR. Urolithiasis detection rates, gall bladder, appendix and rectosigmoid evaluation and overall subjective image quality were evaluated by two observers. Results: 74 stones were present in 17 patients. Half the stones were not detected on FBP at the lowest dose level, but this improved with MIR to a sensitivity of 100%. HIR resulted in a slight decrease in sensitivity at the lowest dose to 72%, but outperformed FBP. Evaluation of other structures with HIR at 40% and with MIR at 60% dose reductions was comparable to FBP at routine dose, but 80% dose reduction resulted in non-evaluable images. Conclusions: CT radiation dose for urolithiasis detection can be safely reduced by 40 (HIR)–60 (MIR) % without affecting assessment of urolithiasis, possible extra-urinary tract pathology or overall image quality. Key Points: • Iterative reconstruction can be used to substantially lower the radiation dose. • This allows for radiation reduction without affecting sensitivity of stone detection. • Possible extra-urinary tract pathology evaluation is feasible at 40–60% reduced dose
    corecore