36 research outputs found

    Long-term hurricane damage effects on tropical forest tree growth and mortality

    Get PDF
    Hurricane winds can have large impacts on forest structure and dynamics. To date, most evaluations of hurricane impacts have focused on short-term responses after a hurricane, often lacked pre-hurricane measurements, and missed responses occurring over longer time scales. Here, we use a long-term data set (1974-2009, 35 years) of tree stems ( >3 cm in diameter at 1.3 m aboveground) in four sites (0.35 ha in total) in montane rain forest (∼1600 m elevation) in Jamaica to investigate the patterns of crown damage in individual stems by Hurricane Gilbert in 1988, and how subsequent growth and mortality were affected by hurricane damage, sprouting, and the incidence of multiple stems. Topographical position on a mountain ridge was the best predictor of crown damage, followed by crown size and species identity. The average diameter growth rate of stems that survived the hurricane was greater than that pre-hurricane for the whole 21-yr post-hurricane period. Growth rates of stems with damaged crowns increased less than those with undamaged crowns; differences in growth rate between damaged and undamaged trees disappeared after 11 years. Hurricanedamaged stems had two to eight times higher mortality than undamaged stems for 19 years post hurricane. Many stems sprouted shortly after the hurricane, but few sprouts managed to establish (grow to >3 cm diameter at breast height). However, sprouting and multi-stemming were associated with reduced mortality rate, particularly in damaged trees. From an initial population of 1670 stems in 1974, 54% were still alive in 2009 (21 years after the hurricane). We conclude that despite the high frequency of hurricane damage to tree crowns and the subsequent increased mortality rate in this hurricane-prone tropical montane forest, many stems will be hit and recover from several hurricanes in their lifetimePeer reviewe

    Isolation predicts compositional change after discrete disturbances in a global meta-study

    Get PDF
    Globally, anthropogenic disturbances are occurring at unprecedented rates and over extensive spatial and temporal scales. Human activities also affect natural disturbances, prompting shifts in their timing and intensities. Thus, there is an urgent need to understand and predict the response of ecosystems to disturbance. In this study, we investigated whether there are general determinants of community response to disturbance across different community types, locations, and disturbance events. We compiled 14 case studies of community response to disturbance from four continents, twelve aquatic and terrestrial ecosystem types, and eight different types of disturbance. We used community compositional differences and species richness to indicate community response. We used mixed-effects modeling to test the relationship between each of these response metrics and four potential explanatory factors: regional species pool size, isolation, number of generations passed, and relative disturbance intensity. We found that compositional similarity was higher between pre- and post-disturbance communities when the disturbed community was connected to adjacent undisturbed habitat. The number of generations that had passed since the disturbance event was a significant, but weak, predictor of community compositional change; two communities were responsible for the observed relationship. We found no significant relationships between the factors we tested and changes in species richness. To our knowledge, this is the first attempt to search for general drivers of community resilience from a diverse set of case studies. The strength of the relationship between compositional change and isolation suggests that it may be informative in resilience research and biodiversity management

    Patterns of ash (Fraxinus excelsior L.) colonization in mountain grasslands: the importance of management practices

    Get PDF
    International audienceWoody colonization of grasslands is often associated with changes in abiotic or biotic conditions or a combination of both. Widely used as fodder and litter in the past traditional agro-pastoral system, ash (Fraxinus excelsior L.) has now become a colonizing species of mountain grasslands in the French Pyrenees. Its present distribution is dependent on past human activities and it is locally controlled by propagule pressure and abiotic conditions. However, even when all favourable conditions are met, all the potentially colonizable grasslands are not invaded. We hypothesize that management practices should play a crucial role in the control of ash colonization. From empirical field surveys we have compared the botanical composition of a set of grasslands (present and former) differing in management practices and level of ash colonization. We have displayed a kind of successional gradient positively linked to both ash cover and height but not to the age of trees. We have tested the relationships between ash presence in grassland and management types i.e. cutting and/or grazing, management intensity and some grassland communities' features i.e. total and local specific richness and species heterogeneity. Mixed use (cutting and grazing) is negatively linked to ash presence in grassland whereas grazing alone positively. Mixed use and high grazing intensity are directly preventing ash seedlings establishment, when low grazing intensity is allowing ash seedlings establishment indirectly through herbaceous vegetation neglected by livestock. Our results show the existence of a limit between grasslands with and without established ashes corresponding to a threshold in the intensity of use. Under this threshold, when ash is established, the colonization process seems to become irreversible. Ash possesses the ability of compensatory growth and therefore under a high grazing intensity develops a subterranean vegetative reproduction. However the question remains at which stage of seedling development and grazing intensity these strategies could occur

    The effects of a hurricane on Jamaican montane rain forests

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D063039 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Landslide impact on organic carbon cycling in a temperate montane forest

    No full text
    In humid, forested mountain belts, bedrock landslides can harvest organic carbon from above ground biomass and soil (OCmodern) while acting to refresh the landscape surface and turnover forest ecosystems. Here the impact of landslides on organic carbon cycling in 13 river catchments spanning the length of the western Southern Alps, New Zealand is assessed over four decades. Spatial and temporal landslide maps are combined with the observed distribution and measured variability of hillslope OCmodern stocks. On average, it is estimated that landslides mobilized 7.6 ± 2.9 tC km−2 yr−1 of OCmodern, ~30% of which was delivered to river channels. Comparison with published estimates of OCmodern export in river suspended load suggests additional erosion of OCmodern by small, shallow landslides or overland flow in catchments. The exported OCmodern may contribute to geological carbon sequestration if buried in sedimentary deposits. Landslides may have also contributed to carbon sequestration over shorter timescales (<100 years). 5.4 ± 3.0 tC km−2 yr−1 of the eroded OCmodern was retained on hillslopes, representing a net-carbon sink following re-vegetation of scar surfaces. In addition, it was found that landslides caused rapid turnover of the landscape, with rates of 0.3% of the surface area per decade. High rates of net ecosystem productivity were measured in this forest of 94 ± 11 tC km−2 yr−1, which is consistent with rapid landscape turnover suppressing ecosystem retrogression. Landslide-OCmodern yields and rates of turnover vary between river catchments and appear to be controlled by gradients in climate (precipitation) and geomorphology (rock exhumation rate, topographic slope)

    Ecology and distribution of neotropical Podocarpaceae

    No full text
    odocarps are a frequent, but rarely a dominant, component of neotropical wet forests extending from South America into central Mexico and the Greater Antilles. Although podocarps are often considered to be predominantly montane taxa, several species occur in lowland forest and are locally abundant on some Pacific and Atlantic coastal islands in Central America. Here we review literature on the origins and distribution of neotropical podocarps and highlight their apparent association with resourcepoor environments. As a consequence of forest conversion and logging, many podocarps that were already habitat specialists are now further restricted to small and increasingly fragmented populations. Unfortunately, there is little information on the regeneration ecology of podocarps with which to assess the recruitment potential of these populations. An exception is the long-term studies of the dynamics of Podocarpus urbanii, a common species in montane forest in Jamaica. Podocarpus urbanii is moderately shade tolerant and successfully regenerates beneath undisturbed forest. The low juvenile mortality rate of P. urbanii, coupled with relatively high diameter growth, suggests that this species and possibly other podocarps may have greater utility for reforestation than is currently recognized

    Podocarpaceae in tropical forests: A synthesis

    Get PDF
    The Podocarpaceae comprises 18 genera and about 173 species of evergreen, coniferous trees and shrubs. It is the most successful gymnosperm family in angiosperm-dominated tropical forests (Brodribb, this volume). Podocarps are distributed mainly in the Southern Hemisphere, with populations also extending as far north as China and Japan and to Mexico and the Caribbean in the neotropics (Dalling et al., this volume; Enright and Jaffré, this volume; Adie and Lawes, this volume)
    corecore