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Long-term hurricane damage effects on tropical forest
tree growth and mortality
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Abstract. Hurricane winds can have large impacts on forest structure and dynamics. To
date, most evaluations of hurricane impacts have focused on short-term responses after a
hurricane, often lacked pre-hurricane measurements, and missed responses occurring over
longer time scales. Here, we use a long-term data set (1974–2009, 35 years) of tree stems (.3
cm in diameter at 1.3 m aboveground) in four sites (0.35 ha in total) in montane rain forest
(;1600 m elevation) in Jamaica to investigate the patterns of crown damage in individual
stems by Hurricane Gilbert in 1988, and how subsequent growth and mortality were affected
by hurricane damage, sprouting, and the incidence of multiple stems. Topographical position
on a mountain ridge was the best predictor of crown damage, followed by crown size and
species identity. The average diameter growth rate of stems that survived the hurricane was
greater than that pre-hurricane for the whole 21-yr post-hurricane period. Growth rates of
stems with damaged crowns increased less than those with undamaged crowns; differences in
growth rate between damaged and undamaged trees disappeared after 11 years. Hurricane-
damaged stems had two to eight times higher mortality than undamaged stems for 19 years
post hurricane. Many stems sprouted shortly after the hurricane, but few sprouts managed to
establish (grow to .3 cm diameter at breast height). However, sprouting and multi-stemming
were associated with reduced mortality rate, particularly in damaged trees. From an initial
population of 1670 stems in 1974, 54% were still alive in 2009 (21 years after the hurricane).
We conclude that despite the high frequency of hurricane damage to tree crowns and the
subsequent increased mortality rate in this hurricane-prone tropical montane forest, many
stems will be hit and recover from several hurricanes in their lifetime.

Key words: Bayesian; Caribbean; cyclone; defoliation; demography; disturbance; forest dynamics;
forest structure; mortality; multiple stems; sprouting; tree growth.

INTRODUCTION

Natural disturbances such as fires and hurricanes can

have major impacts on forests’ structure and dynamics

despite their short duration (from hours to a few days;

Overpeck et al. 1990, Foster et al. 1998). Wind storms

can damage large numbers of trees (Coutts and Grace

1995, Vandermeer et al. 2000), affecting subsequent tree

demography, forest dynamics, and ecosystem processes

(Foster and Boose 1995, Foster et al. 1998). The effects

of tropical cyclones are particularly strong (Zimmerman

et al. 1996, Lugo 2008), and their intensity (wind speed

and amount of rainfall) is expected to increase in the

coming decades due to climate change (Field et al. 2012).

Despite the importance of these effects, only a few

studies have assessed the long-term (more than a decade)

consequences of wind damage on the growth of
individual trees (e.g., Merrens and Peart 1992, Busby

et al. 2008), and fewer still have addressed consequences
on tree mortality (e.g., Weaver 1986, Burslem et al.

2000). Most studies are done within a few years of the
impact of a cyclone (called hurricanes in the Atlantic),

and describe the form of damage and differences
between species in damage and mortality (e.g., in

Jamaica, Bellingham et al. [1995]; in Puerto Rico,
USA, Ostertag et al. [2005]; see Everham and Brokaw

[1996] and Lugo [2008] for general reviews). These short-
term studies may miss tree and forest responses

occurring over longer time scales, and quite often lack
pre-hurricane data to serve as a baseline for comparison

of post-hurricane dynamics.
The scarcity of long-term studies results in high

uncertainties regarding the magnitude and duration of
hurricane impacts on tree mortality and growth. In

lower montane rain forest in Puerto Rico, mortality
rates increased and growth rates were lower in

hurricane-damaged stems than in undamaged stems for
about four years after a major hurricane (Uriarte et al.

2004, 2012). In Florida, over seven years after Hurricane
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Kate, growth and mortality rates were higher or lower

than pre-hurricane rates, depending on the tree species

(Batista and Platt 2003). In the Solomon Islands,

recruitment and mortality rates were still higher 24–28

years after cyclones struck (Burslem et al. 2000). In New

Hampshire, tree growth was higher in a hurricane-

damaged stand than in a comparatively undamaged

stand, for two of four species for 44–48 years after a

hurricane (Merrens and Peart 1992). In South Carolina,

previously damaged trees were more likely to be

damaged by a subsequent hurricane (Putz and Sharitz

1991). These studies establish that hurricane effects on

tree mortality and growth can be long-lasting, but also

highly variable. The factors driving the apparent

variation in the magnitude, species-specificity, and

duration of hurricane impacts remain unclear.

In Jamaica, our studies of forest dynamics in

permanent plots in the Blue Mountains have already

shown that mortality and growth increased shortly after

a hurricane impact (Bellingham et al. 1995), and that

species composition changed over the 20-yr period

1984–2004 (with Hurricane Gilbert in 1988), with an

increase in rarer species and recruitment of light-

demanding species formerly absent from the plots

(Tanner and Bellingham 2006). In this study we exploit

this long-term (14 years pre-hurricane and 21 years post-

hurricane) tropical forest data set to address the

following questions: what factors were associated with

hurricane damage to tree crowns? What was the

magnitude and duration of hurricane-caused damage

on stem growth and mortality? Was tree sprouting after

the hurricane and possession of multiple stems associ-

ated with long-term survival of trees post-hurricane?

METHODS

We report analyses of data from before and after

Hurricane Gilbert, the eye of which passed less than 10

km south of our study sites on 12 September 1988.

Hurricane Gilbert had the lowest atmospheric pressure

yet recorded for a North Atlantic cyclone: its wind

speeds were up to 194 km/h as it crossed Jamaica

(Lawrence and Gross 1989). In the subsequent 21 years

of our study, no hurricane eye passed over (eastern)

Jamaica, although there were several near misses in the

period 2004–2009. These near misses did not have

strong effects on the natural forest as judged by the fact

that no stems of the very light-demanding but short-

lived species Bocconia frutescens were observed in the

forest in the vicinity of the study sites in 2009, whereas

for at least five years after Hurricane Gilbert in 1988,

stems of this small tree were widespread. In the 37 years

between Hurricanes Charlie in 1951 and Gilbert in 1988,

no other hurricane eye passed within 50 km of the study

sites. We conclude that the effects we are studying are

predominantly attributable to Hurricane Gilbert in 1988

and not those of earlier or more recent but more distant

hurricanes.

Our study sites are in forests that are on and near the

main ridge of the Blue Mountains of Jamaica (188050 N,

768390 W, 1500–1650 m altitude). We had four sites (Col

[0.09 ha], Mor [0.06 ha], Mull [0.1 ha], and Slope [0.1

ha]); each site was composed of 6–10 contiguous 103 10

m plots (Appendix A; further details in Tanner [1977],

Tanner and Bellingham [2006]). The Mull, Col, and Mor

sites are on the crest of an undulating steep-sided main

ridge that runs approximately southeast to northwest.

The slope to the northeast of the Mull site is 428, and to

the southwest of it is 338. The main ridge rises by 60 m

over a horizontal distance of 150 m from the southeast

to the Mull site, and then falls by about 15 m to the

northwest into a gap in the main ridge where the Col site

is situated; it then rises by about 30 m to a knoll where

the Mor site is situated (Appendix A). The Slope site is

15–50 m down the northern side of the main ridge. The

hurricane came in from the southeast and the eye passed

overland to the south of the main ridge. Thus the Mull

site was most exposed, the Mor next most exposed, and

the Col was relatively protected by the 15 m decrease in

altitude from the Mull to the Col (and the 30 m rise in

altitude from the Col to the Mor) and its position ;150

m back from the top of the slope leading up to the Mull.

The Slope site was the least exposed, because of its

position on the northern slopes, which were relatively

protected from the eye of Hurricane Gilbert (Bellingham

1991).

The stems were measured in 1974, 1984, 1989, 1991,

1994, 2004, and 2009. At each census, all stems with

diameter at breast height (dbh, 1.3 m aboveground) .3

cm were scored as live or dead, identified to species, and

measured on a painted band (see Appendix B for

descriptive statistics of the number of stems, species, and

stem size for each site). Stems part of multi-stemmed

individuals were recorded as separate stems and their

connection recorded. In the first re-enumeration after

Hurricane Gilbert (1989), crowns of living trees were

scored for damage using a four-point qualitative scale:

(1) crown detached (crowns broken off but with

epicormic sprouts developing), (2) crown bare (no

leaves, i.e., completely defoliated), (3) crown sparse

(few leaves), or (4) crown undamaged; herein we

amalgamated the three categories 1, 2, and 3 into a

category of ‘‘damaged’’ to be compared with undam-

aged. For 703 stems with smaller diameter crowns (stem

dbh 7.2 6 0.1 cm [mean 6 SE]), the crowns were scored

as a whole; for 622 stems with larger diameter crowns

(stem dbh 15.6 6 0.3 cm), the crowns were divided into

upper and lower portions, which were scored separately;

we used only data from the upper portion. Species

names follow Adams (1972), updated and with other

authorities (Appendix C, see also sources available

online).6

6 http://www.theplantlist.org/
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We used hierarchical Bayesian modeling to estimate

the effects of spatial location (site, plot) and individual

characteristics (species, crown size [large or small], and

previous diameter growth rate [an indicator of tree

vitality]) on the probability of crown damage (damaged

cf. undamaged) by the hurricane (n¼1259 stems from 48

species, excluding dead trees and tree ferns). Specifically,

for every individual stem i of species j growing in plot l

at site k, the probability of being damaged (uijkl) was

modeled as

logitðuijklÞ ¼ ak þ cl þ dj þ bl 3 crown sizei

þ b2 3 growth ratei

where crown size was a binary variable (either large or

small) and growth rate represents the average stem-

growth rate during the period 1974–1984 (pre-hurri-

cane). We used relatively non-informative priors for all

parameters. Parameters b1 and b2 had normal priors

with mean 0 and a large standard deviation (1000). In

this and all subsequent analyses, site effects (ak, k ¼ 1,

. . . , 4) were modeled as fixed effects ak ; Normal (0,

1000), while plot (cl) and species (d j) effects were

modeled hierarchically as cl ; Normal (0, rplot) and dj
; Normal (0, rspp). Both standard deviations rplot and

rspp had flat priors Uniform (0, 10).

Stem-diameter growth rates over time were modeled

as a function of location (site, plot), species, individual,

and damage score. For this analysis, we only included

stems surviving the whole study period (n ¼ 915 stems

from 41 species). Specifically, the average diameter

growth rate G of a stem i of species j growing in plot l

at site k during census t (t¼ 1, 2, . . . , 6) was modeled as

Gijklt ; Normalðgijklt;rGÞ

where

gijklt ¼ ak þ cl þ dj þ hi þ bt þ xt 3 Damagei:

Damage is a binary variable separating hurricane-

damaged from undamaged trees. The variable xt was

given a standard non-informative prior, xt ; Normal (0,

1000). Site (ak), plot (cl), and species (d j) effects were

modeled as above. We accounted for individual varia-

tion in growth rates by including random individual

effects hi ; Normal (0, rl), with inter-individual

standard deviation rl having flat prior Uniform

(0, 10), as well as the residual standard deviation rG.

We modeled stem mortality as a Bernouilli process,

accounting for the different duration of census intervals

(Ogle et al. 2006). The probability of mortality of any

stem during census t (sit) was equal to 1 � (1 � Mit)
Yt,

whereMit is the annual probability of mortality of stem i

during census t, and Yt is the number of years spanning

the census (Lines et al. 2010). The annual probability of

mortality of any stem was subsequently modeled for

each census taking into account its location, species

identity, and damage status

logitðMijklÞ ¼ ak þ cl þ dj þ bD 3 Damagei:

We modeled site, plot, and species effects (akþ clþ dj,
respectively) in the same way, and the effects of damage

on mortality were given a standard non-informative

prior: bD ; Normal (0, 1000).

Many stems sprouted in response to hurricane

damage. We analyzed the variation in sprouting

frequency among stems, plots, and species, and the

subsequent effects of sprouting on post-hurricane

mortality. In the 1989 census, one year after the

hurricane, we recorded the stems that had sprouted

from the crown base (above 2.5 m high). The probability

of sprouting was then modeled as a function of stem

location (site, plot), species, damage score (damaged or

not), and crown size (large or small) using the logit link.

Subsequently, we assessed whether crown sprouting and

being multi-stemmed had any influence on overall post-

hurricane mortality (1989–2009) by repeating the

mortality analysis above for individual trees (n ¼
1390), this time including parameters accounting for

sprouting, multi-stemming, and their interaction.

As we aim to explain tree responses to hurricane

damage in these particular sites rather than extrapolat-

ing to other forests, we report finite-population standard

deviations throughout (Gelman and Hill 2007). All

analyses were run in R 3.0 (R Development Core Team

2013) and JAGS 3.3.0 (Plummer 2003) by means of the

R2jags package (Su and Yajima 2012).

RESULTS

Crown damage

Hurricane Gilbert caused extensive crown damage: 5–

8 months after the hurricane, of the 622 stems with

larger crowns scored for damage, 38% were undamaged,

28% sparsely foliated, 18% bare, and 16% crown

detached. Of the 703 stems with smaller crowns, 66%
were undamaged, 22% sparsely foliated, 5% bare, and

7% crown detached. The best predictor of whether a

crown was damaged was topographical position. Trees

in the most affected (Mull) site, on a convex ridge top,

had a 37% greater probability of crown damage on

average than trees in the least affected, north-facing,

Slope site (Table 1, Fig. 1). The next most important

predictors were crown size and species; having a large

crown increased damage probabilities by 26% (calculat-

ed from values in Table 1), and belonging to the most

susceptible species (Solanum punctulatum) increased the

probability of damage by 47% compared with the least

susceptible species (Podocarpus urbanii; Appendix C).

However, we did not detect strong differences in

susceptibility to damage among most species: only three

species had estimated susceptibility significantly differ-

ent from zero, and mean effect size lay between þ and

�0.5 (logit scale) for 38 out of 48 species, including some

that were relatively abundant (Appendix C). Finally,

pre-hurricane growth rates only had a small effect on the

likelihood that a stem was damaged, as a 1 mm/yr higher
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growth rate (a big difference given that the average

growth rate of all stems alive throughout the study

period was 0.6 6 0.02 mm/yr) translated into only an 8%
decrease in the overall probability of damage (Table 1,

Fig. 1).

Stem growth and mortality

The average stem-diameter growth rate of surviving

stems over the full 21-yr post-hurricane period was

greater than that pre-hurricane (Fig. 2, Appendix D).

Whereas growth rates of damaged stems were quite

stable over the whole post-hurricane period, undamaged

stems showed a fourfold increase immediately after the

hurricane, declining to the same level as damaged trees

by 11 years after the hurricane (Fig. 2). Average

diameter growth rates of damaged and undamaged

stems 1–3 years after the hurricane (1989–1991) were

77% and 160% higher, respectively, than before the

TABLE 1. Estimated effects of location (site and plot), species identity, crown size, and pre-
hurricane growth rate (1974–1984) on the probability of damage by the hurricane (recorded in
1989), for 1259 stems of 48 species (tree ferns were excluded) that were alive in 1974, 1984, and
1989.

Factor Mean SE

Credible interval

2.5% 97.5%

Col �1.10 0.30 �1.70 �0.52
Mor �0.25 0.30 �0.83 0.37
Mull 0.45 0.26 �0.06 0.95
Slope �1.43 0.27 �1.99 �0.91
Large crown 1.28 0.15 1.00 1.57
Pre-hurricane growth rate (cm/yr) �4.12 0.97 �6.02 �2.26
Random effects

Species 0.68 0.12 0.47 0.93
Plot 0.46 0.09 0.29 0.65

Notes: Mean effect size, standard error, and 2.5% and 97.5% credible intervals are shown (logit
scale); positive mean values indicate higher probability of damage compared to small-crowned
stems with zero net growth pre-hurricane, which were used as the baseline. Col, Mor, Mull, and
Slope all represent study sites in the Blue Mountains of Jamaica, see Appendix A for more detail.
Values presented for random effects correspond to standard deviations.

FIG. 1. Probability of hurricane damage according to stem location (four sites: Col, Mor, Mull, and Slope, all in or near the
Blue Mountains of Jamaica; see Appendix A for more detail), crown size (large or small), and pre-hurricane (1974–1984) diameter
growth rate (n¼1259 stems). Shaded areas represent 95% credible intervals. Dots represent observed growth rates for damaged (top
of graph) and undamaged (bottom of graph) trees.
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hurricane (1974–1984). The diameter growth rate of

damaged stems was significantly lower than that of

undamaged stems for up to six years post-hurricane

(1989–1991 and 1991–1994; Fig. 2). There was also

substantial variation among species and individuals

within species (Appendix D): although surviving trees

of all species responded positively to the hurricane in

terms of subsequent growth rate, the increase was much

greater in some species (e.g., Alchornea latifolia) than

others (Lyonia octandra; Appendix E).

Overall stem mortality rates (damaged and undam-

aged stems together) were higher in the six years after

the hurricane and slowly returned to pre-hurricane rates

6–21 years post-hurricane (Fig. 3). The increase was

entirely attributable to the significantly greater mortality

rates of stems with hurricane-damaged crowns (3.4% per

year, 1989–1994) vs. stems with undamaged crowns

(0.45% per year, 1989–1994). During the same 6-yr

period, the probability of mortality of stems with

undamaged crowns was less than half that of the pre-

hurricane years. Hurricane effects on mortality were

long-lasting: stems with damaged crowns had signifi-

cantly greater mortality than undamaged stems for

between 16 and 21 year post-hurricane (Fig. 3). At the

time of the last census (2009), mortality rates of stems

with damaged and undamaged crowns had still not fully

converged. Hurricane damage thus had longer-term

effects on mortality than on growth; differences in stem-

diameter growth between damaged and undamaged

trees mostly disappeared between 6 and 16 year after the

hurricane (Fig. 2).

Sprouting

Sprouts above 2.5 m on a stem were present on 38% of

stems in 1989, a year after the hurricane. The presence of

sprouts was very species-dependent, including frequent

FIG. 2. Stem diameter growth rates (mean 6 SE) prior to and following Hurricane Gilbert for crown-damaged and crown-
undamaged stems. The dashed line marks the year of the hurricane (1988). Shaded background represents the time span of each
census; parameter estimates are plotted in the middle of the census period. Only stems surviving the whole period (1974–2009) were
included in this analysis (n ¼ 915 stems).

FIG. 3. Effects of hurricane damage on stem mortality (mean 6 SE) across the whole study period. The dashed line marks the
year of the hurricane (1988). Shaded background represents the time span of each census; parameter estimates are plotted in the
middle of the census period.
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sprouters (e.g., Eugenia biflora, Lyonia octandra, Chae-

tocarpus globosus, and Sideroxylon montanum) and non-

sprouters (Clusia havetioides and Schefflera sciodaphyl-

lum). On average, large-crowned undamaged trees

showed the highest probability of sprouting (33%; Table

2). Damaged stems showed slightly lower sprouting

(;25%) regardless of their crown size. Despite the

intense post-hurricane sprouting (both above and below

2.5 m on a stem), the percentage of multiple-stemmed

individuals hardly changed throughout the 35-yr period,

from 13.0% in 1974 to 13.5% in 1989, 14.1% in 1994,

14.6% in 2004, and 13.9% in 2009. Sprouting and having

multiple stems (which were correlated) were associated

with lower long-term (1989–2009) mortality in damaged

trees (average mortality rate around 2.3% per year

compared to 3.5% for damaged single-stem, non-

sprouted trees). Sprouting and multi-stemming effects

on mortality were apparently much weaker for undam-

aged trees; the significant effect for undamaged sprouted

multi-stems (Table 3) has a wide credible interval and is

based on only 23 stems. There were 365 recruits to the

plots in years one to six after the hurricane (1989–1994);

34% of these were part of a multi-stemmed individual,

not significantly different from the 30% of 121 stems

recruited between 1984 and 1989 (four years before and

the first year immediately after the hurricane, respec-

tively). Thus, stem recruitment after the hurricane

derived mostly from sexual regeneration (i.e., seeds or

TABLE 2. Effects of stem location (site and plot), species, crown size, and damage status on the
probability of sprouting after the hurricane (n ¼ 1670 stems from 63 species).

Factor Mean SE

Credible interval

2.5% 97.5%

Col �1.99 0.39 �2.77 �1.25
Mor �0.64 0.40 �1.43 0.14
Mull �1.47 0.35 �2.16 �0.81
Slope �1.89 0.36 �2.60 �1.19
Undamaged and large crown 0.78 0.20 0.39 1.17
Damaged and small crown 0.43 0.18 0.07 0.79
Damaged and large crown 0.40 0.18 0.05 0.74
Random effects

Species 1.48 0.23 1.11 2.00
Plot 0.62 0.11 0.43 0.85

Notes: Mean effect size, standard error, and 2.5% and 97.5% credible intervals are shown (logit
scale); positive mean values indicate more sprouting compared to undamaged, small-crowned stems
used as baseline. Values presented for random effects correspond to standard deviations.

TABLE 3. Effects of tree location (site and plot), species, hurricane damage, sprouting, and multi-
stemming on the long-term probability of mortality of individual trees (1989–2009; n ¼ 1390
trees).

Factor Mean SE

Credible interval

2.5% 97.5%

Col �4.28 0.22 �4.72 �3.84
Mor �4.52 0.27 �5.05 �4.00
Mull �4.32 0.22 �4.74 �3.89
Slope �4.83 0.22 �5.27 �4.39
Undamaged

Sprouted (single stem) �0.32 0.23 �0.78 0.13
Multi-stem (not sprouted) �0.20 0.46 �1.17 0.60
Sprouted multi-stem �2.14 1.29 �5.29 �0.24

Damaged

Single stem, not sprouted 1.17 0.15 0.87 1.47
Sprouted (single stem) 0.72 0.20 0.34 1.11
Multi-stem (not sprouted) 0.74 0.28 0.16 1.28
Sprouted multi-stem 0.10 0.29 �0.49 0.62

Random effects

Species 0.90 0.12 0.67 1.15
Plot 0.17 0.09 0.01 0.34

Notes: Mean effect size, standard error, and 2.5% and 97.5% credible intervals are shown (logit
scale); positive mean values indicate higher probability of mortality compared to undamaged,
single, non-sprouted stems used as baseline. Values presented for random effects correspond to
standard deviations.
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seedling bank) rather than basal sprouting of older

individuals.

DISCUSSION

Hurricane damage: its correlates and its effects

on stem growth and mortality

Crown damage caused by Hurricane Gilbert was

related to topographic position, crown size, and species

identity. Our results show that topographic position and
the degree of exposure to strong winds are important

predictors of damage in sites along a mountain ridge (see

also Boose et al. 1994, 2004) and can override other
factors (e.g., tree size, species identity) that are often

emphasized in the literature on hurricane impacts

(Everham and Brokaw 1996). In highly exposed stands,
most trees will experience greater damage regardless of

their individual characteristics, and vice versa: protected

stands will act as refugia where both less susceptible and

more susceptible trees will be more likely to escape
hurricane damage. Topographical effects, when investi-

gated, have sometimes given apparently contradictory

results. For example, after different hurricanes affected
forests in the Luquillo Mountains in Puerto Rico,

Ostertag et al. (2005) reported that trees growing on

ridges and valleys were more affected than those on
slopes, whereas Scatena and Lugo (1995) found that

trees on slopes were more affected than those on ridges;

possibly because the root-grafted Dacryodes excelsa was
particularly abundant on ridges in that area (Lugo

2008). Another study in a 16-ha plot in the Luquillo

Mountains found that topographical effects were of
lesser importance than tree size and species identity in

determining crown damage caused by Hurricane Hugo

(Canham et al. 2010). Therefore, the probability of
hurricane damage seems to be determined by the

interplay of landscape position and individual tree

characteristics (e.g., large trees were more affected).

These interactions between intrinsic (individual) and
extrinsic (landscape) factors should be considered more

thoroughly in future studies assessing patterns of

hurricane damage in forests.
The average stem-diameter growth rate (all stems

damaged and undamaged) was greater for the full 21-yr

post-hurricane period than in the pre-hurricane period.

The growth of stems with hurricane-damaged crowns
increased less than those with undamaged crowns; this

difference persisted for 11 years after the hurricane hit.

The increased stem growth rate after the hurricane was
probably due to increased light reaching the middle and

lower levels of the canopy (Bellingham et al. 1996,

Tanner and Bellingham 2006) and reduced belowground
competition, caused by the severe damage to many large

crowns; similar patterns have been found elsewhere

(Lugo 2008). In Puerto Rican rain forests affected by
Hurricane Hugo, the diameter growth of undamaged

stems exceeded that of damaged for six of 12 dominant

tree species for four years post-hurricane (Uriarte et al.
2004), in a general context of increased forest growth

rates (e.g., net primary productivity in nearby forests

tripled after two hurricanes; Lugo 2008). Other studies

found longer-lasting increases of tree growth post-

hurricane, e.g., at least seven years in Florida (Batista

and Platt 2003), a decade in the Dominican Republic

(Sherman et al. 2012), and .40 years in New Hampshire

(Merrens and Peart 1992). Hence, even though increased

growth of surviving trees after a hurricane, especially

those less damaged, seems to be a general phenomenon,

there is considerable variation in the duration and

magnitude of growth stimulation among species and

forest types. These could be explained by differences in

forest structure, damage intensity, species resilience, and

post-disturbance recovery strategies, and speed of

canopy closure after the hurricane (Lugo 2008). Our

results confirm that, even within the same forest, post-

hurricane growth rates will vary substantially between

species and trees within species depending on the

amount of damage (Fig. 2, Appendices D and E).

Hence, studies based on short-term time series (e.g.,

lacking evaluation of damage immediately after the

hurricane, or pre-hurricane growth data) and focused on

stand rather than individual scales (e.g., analyzing

changes in total basal area rather than individual stems’

demography) may miss more subtle yet important long-

term consequences of hurricane disturbances on forest

dynamics.

Higher tree mortality rates after hurricanes have often

been documented (Everham and Brokaw 1996), though

the duration of that increase is rarely reported. In the

Jamaican forest in this study, mortality of damaged

stems was higher for ;19 years after a severe hurricane.

In forests of the Luquillo Mountains in Puerto Rico,

Hurricane Hugo caused increased tree mortality over

about four years (Uriarte et al. 2004), but this effect was

not evident by a third census 11–12 years after the

hurricane (Uriarte et al. 2012). Despite the increased

mortality post-hurricane, many trees are likely to survive

several hurricanes; in Jamaica, 54% of the initial

population of 1670 stems in 1974, 71% of all stems

present in 1984 (before Hurricane Gilbert), and 59% of

those damaged by the hurricane were still alive by 2009.

Average annual mortality rates in the 21 years post-

hurricane were 0.5% higher (1.6%) than pre-hurricane

baselines (1.1%). Thus, although return times of

hurricanes to the Jamaican Blue Mountains are very

irregular, given that the average is ;25 years (five

hurricane eyes passed within 20 km of the Blue

Mountains between 1870 and 2010), most stems will

experience more than one hurricane in their lifetime.

This seems to be true in other forests, too; in Puerto

Rico, 26% of stems .4.1 cm dbh survived from 1946 to

2000 (Weaver 2002), a period that included hurricanes in

1956, 1989, and 1998.

Role of sprouting in post-hurricane recovery

After a hurricane, epicormic sprouting on tree trunks

is obvious (Yih et al. [1991] in Nicaragua; Bellingham et
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al. [1994] in Jamaica; Zimmerman et al. [1994] in Puerto

Rico). Sprouting is an efficient means of mobilizing

stored reserves to regain lost biomass and leaf area

(Sakai and Sakai 1998). Hurricanes often cause wide-

spread defoliation, and sprouts may help maintain

photosynthesis in the years immediately after the

hurricane while the stems regrow their main canopy.

In Puerto Rican rain forests affected by Hurricane

Hugo, Walker (1991) asserted that widespread sprouting

and minimal breakage of large branches would result in

tree recovery despite that fact that 56% of trees were

defoliated, and Boucher (1990) made similar predictions

about Nicaraguan rain forests affected by Hurricane

Joan. In our study, sprouting was positively related to

survivorship: stems with hurricane-damaged crowns that

sprouted above 2.5 m height had much lower mortality

(2.3% per year over the 21-yr post-hurricane period)

than non-sprouted stems (3.5%). Some sprouts from

below 1.3 m survived and grew large enough to be

included in stem censuses (�3.0 cm dbh), but two-thirds

of the newly recruited stems five years after the

hurricane originated from seedlings, not sprouts from

existing tree stems. The importance of sprouting for

post-disturbance recovery is, however, strongly species-

specific (Table 2; Dietze and Clark 2008, Uriarte et al.

2012). Beyond new stem recruitment, basal sprouts

contribute to multi-stemmed individuals having a

greater chance of survival than single-stemmed individ-

uals, in Jamaica (Bellingham and Sparrow 2009), Samoa

(Webb et al. 2014), and probably Puerto Rico (Uriarte

et al. 2012). However, experimental removal of basal

sprouts will be necessary to establish if sprouting causes

increased survival or if it is simply that more vigorous

individuals have both more sprouts and higher survival.

Long-term effects of hurricanes at the stand level

In Jamaica, stems comprising 32% of the total basal

area present in 1974 had died by 2004 (Tanner and

Bellingham 2006). However, total basal area per plot

remained very similar, due to the increased growth of

survivors (Fig. 2) and the increased post-hurricane

recruitment (Tanner and Bellingham 2006) that com-

pensated for the basal area mortality. Results from

several other countries also show that the total stand

basal area can remain quite stable or recover quickly

after major wind damage (Lugo 2008), though there are

often other changes such as shifts in species composition

(Bellingham et al. 1995) or stand structure, including

shifts to more and smaller stems (Merrens and Peart

1992, Bellingham et al. 1995). Such changes can happen

slowly, even in the course of several centuries (Foster et

al. 1998, Lugo 2008). The disturbance regime is likely to

govern responses. We have shown that, in Jamaica,

where the average return interval for hurricanes is 25

years, a single hurricane increased overall growth for the

whole 21-yr post-hurricane period, and hurricane-

damaged stems had reduced growth for 11 years and

increased mortality for 19 years. However, some forests

are subject to several powerful cyclonic storms within a

decade; for example, in northeastern Australia (Webb
1958), Taiwan (Lin et al. 2011), and the northeastern
USA (Papaik and Canham 2006). The consequences of

damage to individual stems in these ‘‘hyper-disturbed’’
forests have not been determined. The species compo-
sition of forests and the traits of individual species,

including their susceptibility to pathogens, are likely to
determine responses to repeated disturbances. In spe-

cies-rich forests, differential damage among species
(Canham et al. 2010) can result in long-term differences
in growth among species (Appendix E). This in turn can

lead to compositional shifts along a continuum of
resilient to resistant species (Bellingham et al. 1995,

Batista and Platt 2003; see also Wonkka et al. 2013),
which is likely to be related to time since disturbance
(Holling 1973). Finally the high variability in frequency

of hurricane impacts at any location (Healey 1990,
Sherman et al. 2012) will further complicate these
effects. Thus, the interaction of disturbance regimes

and species differential responses generate complex and
varied patterns of forest dynamics (Papaik and Canham

2006).

Conclusion

Long-term monitoring of forest plots can provide

important insights on the effects of hurricanes and other
natural disturbances on tree demography and forest
stand dynamics. The availability of pre-hurricane data

enabled us, for instance, to detect a significant overall
increase of stem growth rates following the hurricane. In

the absence of pre-hurricane baseline data, hurricane-
induced changes in tree demography would remain
undetected or, even worse, misinterpreted. Furthermore,

the demographic impacts of hurricane damage can be
long-lasting; in Jamaica, 19 years for mortality and 11

years for growth. In forests where there is a lot of
topographic diversity (as in Jamaica), position in the
landscape is a strong determinant of hurricane damage,

after which crown size and tree species are the next most
important correlates. Recovery from damage was higher
in multiple-stemmed trees and stems with sprouts above

2.5 m. Some basic aspects of forest structure are often
not greatly affected by hurricanes, for example, total

basal area. Other aspects of structure, like canopy height
and crown diameters, are likely to be more affected by
hurricanes but are rarely recorded before hurricanes (a

notable exception is the study of Wunderle et al. 1992).
Despite the high frequency of damage to tree crowns

and associated increased mortality rate, most stems
survived long after the hurricane. Given the high
frequency of hurricanes and windstorms in many

tropical areas, it is likely that many canopy trees will
be damaged and recover from several severe disturbanc-

es in their lifetime.
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