519 research outputs found

    Evaluation of agricultural ecosystem services in fallowing land based on farmers' participation and model simulation

    Get PDF
    Fallowing with green fertilizer can benefit agricultural ecosystem services (AES). Farmers in Taiwan do not implement fallow practices and plant green fertilizer because the current subsidy level (46,000 NTperha)istoolowtomanagefallowing.Thispaperdefinestheobjectiveofgovernmentagriculturepolicyorthefarmersobjectiveasmaximizationoffarmproductivity,approximatedtothevalueofsocialwelfareandAES.Farms,whichdonotfollowproperfallowingpractices,oftenhavepoorlymaintainedfallowlandorleftfarmlandabandoned.Thisresultsinnegativeenvironmentalconsequencessuchascutworminfestationsinabandonedland,whichinturncanaffectcropsinadjacentfarmlands.Theobjectivesofthisstudyaretwofold.First,itdeterminestheproperfallowingsubsidybasedontheconceptofpaymentforecosystemservicestoenticemorefarmerstoparticipateinfallowing.Second,itsimulatesthebenefitofplantinggreenmanureinfallowlandtothesupplyofAESbasedontherateoffarmerswhoarewillingtoparticipateinfallowlandpracticesandessentialparametersthatcanaffectsoilfertilitychange.Theapproachinvolvesaseriesofinterviewsandadevelopedempiricalmodel.ThevalueofAESwhentherateoffarmerparticipationis100 per ha) is too low to manage fallowing. This paper defines the objective of government agriculture policy or the farmer’s objective as maximization of farm productivity, approximated to the value of social welfare and AES. Farms, which do not follow proper fallowing practices, often have poorly maintained fallow land or left farmland abandoned. This results in negative environmental consequences such as cutworm infestations in abandoned land, which in turn can affect crops in adjacent farmlands. The objectives of this study are twofold. First, it determines the proper fallowing subsidy based on the concept of payment for ecosystem services to entice more farmers to participate in fallowing. Second, it simulates the benefit of planting green manure in fallow land to the supply of AES based on the rate of farmers who are willing to participate in fallow land practices and essential parameters that can affect soil fertility change. The approach involves a series of interviews and a developed empirical model. The value of AES when the rate of farmer participation is 100% represents a 1.5% increase in AES (448,317,000 NTperha)istoolowtomanagefallowingThispaperdefinestheobjectiveofgovernmentagriculturepolicyorthefarmer’sobjectiveasmaximizationoffarmproductivityapproximatedtothevalueofsocialwelfareandAESFarmswhichdonotfollowproperfallowingpracticesoftenhavepoorlymaintainedfallowlandorleftfarmlandabandonedThisresultsinnegativeenvironmentalconsequencessuchascutworminfestationsinabandonedlandwhichinturncanaffectcropsinadjacentfarmlandsTheobjectivesofthisstudyaretwofoldFirstitdeterminestheproperfallowingsubsidybasedontheconceptofpaymentforecosystemservicestoenticemorefarmerstoparticipateinfallowingSeconditsimulatesthebenefitofplantinggreenmanureinfallowlandtothesupplyofAESbasedontherateoffarmerswhoarewillingtoparticipateinfallowlandpracticesandessentialparametersthatcanaffectsoilfertilitychangeTheapproachinvolvesaseriesofinterviewsandadevelopedempiricalmodelThevalueofAESwhentherateoffarmerparticipationis100 ) over the value at the current participation rate of 14%. This study further concludes that the appropriate fallowing subsidy has a large positive impact on AES and social welfare (e.g., benefit from food and biofuel supplies) and is seen as a basis of ecological governance for sustainable agro-ecosystems

    Screening of Dirac flavor structure in the seesaw and neutrino mixing

    Full text link
    We consider the mechanism of screening of the Dirac flavor structure in the context of the double seesaw mechanism. As a consequence of screening, the structure of the light neutrino mass matrix, m_\nu, is determined essentially by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck scale) neutral fermions S. We calculate effects of the renormalization group running in order to investigate the stability of the screening mechanism with respect to radiative corrections. We find that screening is stable in the supersymmetric case, whereas in the standard model it is unstable for certain structures of M_S. The screening mechanism allows us to reconcile the (approximate) quark-lepton symmetry and the strong difference of the mixing patterns in the quark and lepton sectors. It opens new possibilities to explain a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and quark-lepton complementarity. Screening can emerge from certain flavor symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model modifie

    Predicting leptonic CP violation in the light of Daya Bay result

    Full text link
    In the light of the recent Daya Bay result the reactor angle is about 9 degrees, we reconsider the model presented in arXiv:1005.3482 showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et al and the reactor angle to be the central value of Daya Bay, the predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348

    E6,7,8 Magnetized Extra Dimensional Models

    Full text link
    We study 10D super Yang-Mills theory with the gauge groups E6E_6, E7E_7 and E8E_8. We consider the torus/orbifold compacfitication with magnetic fluxes and Wilson lines. They lead to 4D interesting models with three families of quarks and leptons, whose profiles in extra dimensions are quasi-localized because of magnetic fluxes.Comment: 17 pages, 1 figur

    Seesaw tau lepton mass and calculable neutrino masses in a 3-3-1 model

    Full text link
    In a version of the 3-3-1 model proposed by Duong and Ma the introduction of the scalar sextet for giving mass to the charged leptons is avoided by adding a singlet charged lepton. We show that in this case the τ\tau lepton gains mass through a seesaw--like mechanism. Besides we show how to generate neutrino masses at the tree and at the 1-loop level with the respective Maki-Nakagawa-Sakata leptonic mixing matrices.Comment: revtex, 5 pages and one eps figure. Published versio

    UHECR Acceleration in Dark Matter Filaments of Cosmological Structure Formation

    Full text link
    A mechanism for proton acceleration to ~10^21eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by the ExB drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p_perp^2/B. Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this 'betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax=eBRcp_{max}=eBR for an accelerator with magnetic field BB and the orbit radius RR (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. The mechanism requires pre-acceleration that is likely to occur in structure formation shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators to a firm upper limit ~10^19.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy 10^21 eV. A requirement on accelerator to reach a given E_max placed by the accelerator energy dissipation \propto E_{max}^{2}/Z_0 due to the finite vacuum impedance Z_0 is circumvented by the cyclic operation of the accelerator.Comment: 34 pages, 10 figures, to be published in JCA

    Possible Flavor Mixing Structures of Lepton Mass Matrices

    Get PDF
    To search for possible textures of lepton mass matrices, we systematically examine flavor mixing structures which can lead to large lepton mixing angles. We find out 37 mixing patterns are consistent with experimental data, taking into account phase factors in the mixing matrices. Only six of the patterns can explain the observed data without any tuning of parameters, while the others need particular choices for the phase values. It is found that these six mixing patterns are those predicted by the models which have been proposed to account for fermion mass hierarchies. On the other hand, the others may give new flavor mixing structures of lepton mass matrices and therefore new possibilities of model construction.Comment: 21 page

    Anti-plane interfacial crack with functionally graded coating: static and dynamic

    Get PDF
    The anti-plane displacement discontinuity method is applied to establish the Fredholm integral equation of the first kind for the orthotropic Functionally Graded Material (FGM) coatings subjected to static/dynamic shears. The shear modulus and mass density are assumed to vary exponentially through the thickness. The static and dynamic fundamental solutions with anti-plane displacement discontinuity are derived for orthotropic FGM coating by using Fourier transform method and Laplace transform method. It has been shown that the transformed fundamental solution with orthotropic coatings has the same order of hyper-singularity as in the static case, i.e. O(1/r2), and the Chebyshev polynomials of the second kind are used to solve the integral equations numerically. The time dependent stress intensity factors are obtained directly from the coefficients of the Chebyshev polynomials with the aid of Durbin’s Laplace transform inversion method. A comparative study of FGM versus homogeneous coating is conducted, and the dependence of the stress intensity factors in the coating/substrate system on the material property (orthotropic) and thickness of coating is examined. Two examples including the static/dynamic loads are given as benchmarks for the numerical methods and application in composite engineering

    U(2)-like Flavor Symmetries and Approximate Bimaximal Neutrino Mixing

    Get PDF
    Models involving a U(2) flavor symmetry, or any of a number of its non-Abelian discrete subgroups, can explain the observed hierarchy of charged fermion masses and CKM angles. It is known that a large neutrino mixing angle connecting second and third generation fields may arise via the seesaw mechanism in these models, without a fine tuning of parameters. Here we show that it is possible to obtain approximate bimaximal mixing in a class of models with U(2)-like Yukawa textures. We find a minimal form for Dirac and Majorana neutrino mass matrices that leads to two large mixing angles, and show that our result can quantitatively explain atmospheric neutrino oscillations while accommodating the favored, large angle MSW solution to the solar neutrino problem. We demonstrate that these textures can arise in models by presenting a number of explicit examples.Comment: 20 pages RevTex4, 2 figure

    Quark-lepton complementarity, neutrino and standard model data predict (θ13PMNS=92+1)(\theta_{13}^{PMNS}=9^{+1}_{-2})^\circ

    Full text link
    The complementarity between the quark and lepton mixing matrices is shown to provide a robust prediction for the neutrino mixing angle θ13PMNS\theta_{13}^{PMNS}. We obtain this prediction by first showing that the matrix VMV_M, product of the CKM and PMNS mixing matrices, may have a zero (1,3) entry which is favored by experimental data. Hence models with bimaximal or tribimaximal forms of the correlation matrix VMV_M are quite possible. Any theoretical model with a vanishing (1,3) entry of VMV_M that is in agreement with quark data, solar, and atmospheric mixing angle leads to θ13PMNS=(92+1)\theta_{13}^{PMNS}=(9{^{+1}_{-2}})^\circ. This value is consistent with the present 90% CL experimental upper limit.Comment: 15 pages, 7 figures. Final version to appear in the journa
    corecore