128 research outputs found

    Micromagnetic modelling and imaging of vortex/merons structures in an oxide | metal heterostructure

    Get PDF
    Using micromagnetic simulations, we have modelled the formation of imprinted merons and anti-merons in cobalt overlayers of different thickness (1-8 nm), stabilised by interfacial exchange with antiferromagnetic vortices in α-Fe2O3. Structures similar to those observed experimentally could be obtained with reasonable exchange parameters, also in the presence of surface roughness. We produce simulated meron/antimeron images by magnetic force microscopy (MFM) and nitrogen-vacancy (N-V) centre microscopy, and established signatures of these topological structures in different experimental configurations

    Ferroelectricity Induced by Acentric Spin-Density Waves in YMn2O5

    Get PDF
    The commensurate and incommensurate magnetic structures of the magnetoelectric system YMn2O5, as determined from neutron diffraction, were found to be spin-density waves lacking a global center of symmetry. We propose a model, based on a simple magnetoelastic coupling to the lattice, which enables us to predict the polarization based entirely on the observed magnetic structure. Our data accurately reproduce the temperature dependence of the spontaneous polarization, particularly its sign reversal at the commensurate-incommensurate transition

    Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites

    Full text link
    The role of lattice distortion in the charge, orbital and spin ordering in half doped manganites has been investigated. For fixed magnetic ordering, we show that the cooperative lattice distortion stabilize the experimentally observed ordering even when the strong on-site electronic correlation is taken into account. Furthermore, without invoking the magnetic interactions, the cooperative lattice distortion alone may lead to the correct charge and orbital ordering including the charge stacking effect, and the magnetic ordering can be the consequence of such a charge and orbital ordering. We propose that the cooperative nature of the lattice distortion is essential to understand the complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure

    Cooling rate dependence of the antiferromagnetic domain structure of a single crystalline charge ordered manganite

    Full text link
    The low temperature phase of single crystals of Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 and Gd0.5_{0.5}Ca0.5_{0.5}MnO3_3 manganites is investigated by squid magnetometry. Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 undergoes a charge-ordering transition at TCOT_{CO}=245K, and a long range CE-type antiferromagnetic state is established at TNT_N=145K. The dc-magnetization shows a cooling rate dependence below TNT_N, associated with a weak spontaneous moment. The associated excess magnetization is related to uncompensated spins in the CE-type antiferromagnetic structure, and to the presence in this state of fully orbital ordered regions separated by orbital domain walls. The observed cooling rate dependence is interpreted to be a consequence of the rearrangement of the orbital domain state induced by the large structural changes occurring upon cooling.Comment: REVTeX4; 7 pages, 4 figures. Revised 2001/12/0

    Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3

    Full text link
    Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3 in the full magnetic unit cell show that the magnetic ground states of these compounds consist of 'ferromagnetic molecules' or polarons ordered in herring-bone patterns. Each polaron consists of either three or five Mn ions separated by O- ions with a magnetic moment opposed to those of the Mn ions. Ferromagnetic coupling within the polarons is strong while coupling between them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and 3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in good agreement with recently reported magnetisation measurements from electron microscopy. The polaronic nature of the electronic structure reported here is obviously related to the Zener polaron model recently proposed for Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure

    Orbital ordering in the manganites: resonant x-ray scattering predictions at the manganese LII and LIII edges

    Get PDF
    It is proposed that the observation of orbital ordering in manganite materials should be possible at the L II and L III edges of manganese using x-ray resonant scattering. If performed, dipole selection rules would make the measurements much more direct than the disputed observations at the manganese K edge. They would yield specific information about the type and mechanism of the ordering not available at the K edge, as well as permitting the effects of orbital ordering and Jahn-Teller ordering to be detected and distinguished from one another. Predictions are presented based on atomic multiplet calculations, indicating distinctive dependence on energy, as well as on polarization and on the azimuthal angle around the scattering vector

    Magnetic fan structures in Ba0.5Sr1.5Zn2Fe12O22 hexaferrite revealed by resonant soft x-ray diffraction

    Get PDF
    The hexaferrites are known to exhibit a wide range of magnetic structures, some of which are connected to important technological applications and display magnetoelectric properties. We present data on the low magnetic field structures stabilized in a Y-type hexaferrite as observed by resonant soft x-ray diffraction. The helical spin block arrangement that is present in zero applied magnetic field becomes fanlike as a field is applied in plane. The propagation vectors associated with each fan structure are studied as a function of magnetic field, and a new magnetic phase is reported. Mean field calculations indicate this phase should stabilize close to the boundary of the previously reported phases

    Phase diagram of the La1−x_{1-x}Cax_{x}MnO3_{3} compound for 0.5≤x≤0.90.5\leq x\leq 0.9

    Full text link
    We have studied the phase diagram of La1−x_{1-x}Cax_{x}MnO3_{3} for 0.5≤x≤0.90.5\leq x\leq 0.9 using neutron powder diffraction and magnetization measurements. At 300 K all samples are paramagnetic and single phase with crystallographic symmetry PnmaPnma. As the temperature is reduced a structural transition is observed which is to a charge-ordered state only for certain x. On further cooling the material passes to an antiferromagnetic ground state with Neel temperature TNT_N that depends on x. For 0.8≤x≤0.90.8\leq x\leq 0.9 the structural transformation occurs at the same temperature as the magnetic transition. Overall, the neutron diffraction patterns were explained by considering four phase boundaries for which La1−x_{1-x}Cax_xMnO3_3 forms a distinct phase: the CE phase at x=0.5−0.55x=0.5-0.55, the charge-ordered phase at x=2/3, the monoclinic and C-type magnetic structure at x=0.80−0.85x=0.80-0.85 and the G-type magnetic structure at x=1. Between these phase boundaries the magnetic reflections suggest the existence of mixed compounds containing both phases of the adjacent phase boundaries in a ratio determined by the lever rule
    • …
    corecore