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Micromagnetic modeling and imaging of vortex|meron structures in an oxide|metal heterostructure
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Using micromagnetic simulations, we have modeled the formation of imprinted merons and antimerons in
cobalt overlayers of different thickness (1–8 nm), stabilized by interfacial exchange with antiferromagnetic
vortices in α-Fe2O3. Structures similar to those observed experimentally could be obtained with reasonable
exchange parameters, also in the presence of surface roughness. We produce simulated meron and antimeron
images by magnetic force microscopy and nitrogen-vacancy center microscopy, and established signatures of
these topological structures in different experimental configurations.
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I. INTRODUCTION

“Oxide electronics” aims at combining the multifunctional
properties of transition-metal oxides with more traditional
spintronic approaches and represents one of the most promis-
ing pathways to post-complementary metal-oxide semicon-
ductor computing [1]. One approach is to exploit the rich
real-space topological properties of oxide domains to create
structures such as vortices and skyrmions, which could be
“imprinted” onto ferromagnetic (FM) read-out overlayers.
Heterostructures of this kind, particularly those built with
rare-earth-free materials, could be used as high-density, non-
volatile memories with a high degree of thermal stability.

Skyrmions are the best known example of magnetic topo-
logical object, and have received an enormous amount of
attention (see for example [2,3] for recent reviews). Mag-
netic merons and antimerons (essentially flat vortices and
antivortices with an out-of-plane core) have been known to
exist as closure domains in magnetic nanodots since the early
2000s [4] and have more recently been observed in extended
systems, either as intermediate stages of skyrmion array for-
mation in chiral magnets [5] or as light-induced metastable
magnetic textures in the absence of in-built chirality [6]. Both
skyrmions and merons can be thought of as projections onto
a tangent plane of a vector field defined on the surface of
a sphere, the projection point being either the center of the
sphere (meron) or the opposite pole (skyrmion) [3]. As such,
these objects can be characterized by a topological charge
or winding number, w. The magnitude |w| counts how many
times the vector field wraps around the sphere or half sphere,
while the sign of w defines the direction of wrapping. The
topological charge, which can be calculated as a surface inte-
gral of the projected field [3], is a positive (negative) integer
for skyrmions (antiskyrmions) and a positive (negative) half-
integer for merons (anti-merons) [3]. One important property
of the topological charge is that, being an integer or half
integer, it must change discontinuously, and is therefore left
invariant by smoothly varying rotations in spin space. In other

words, in order to alter the topological charge of a given
object, one must introduce a singularity in the local field.
Since this tends to be associated with a high energy cost, these
objects are often said to be “topologically protected.” In real
magnetic systems, topological objects do not enjoy an abso-
lute protection (for example, they can annihilate with their
own antiparticles) but are often very stable against thermal
fluctuations.

Using a combination of x-ray magnetic linear and
circular dichroism photoelectron emission microscopy
(XMLD/XMCD-PEEM), we have recently demonstrated that
antiferromagnetic (AFM) planar vortices and antivortices
exist in α-Fe2O3, and that these structures are “imprinted”
as FM vortices onto a 1-nm soft Co overlayer [7]. Although
our XMCD-PEEM measurements were not conclusive due
to limitations in spatial resolution, they were consistent with
an out-of-plane component of the Co spins, which would
make the Co structures merons and antimerons [8] rather than
planar vortices. If corroborated, the observation of merons
and antimerons would be extremely important, since the
out-of-plane spin component would represent a convenient
two-bit state, which, similar to skyrmions, is to a large
extent topologically protected [9]. Another conclusion of
our experimental work was that spins in Co are co-aligned
with the α-Fe2O3 AFM spins, indicating that the interaction
responsible for the vortex|meron coupling is akin to exchange
bias [10] (hereafter, we refer to this as “exchange-bias
interaction”) rather than the 90◦ interaction observed in other
systems [11]. This raises another important question: Since
AFM spins in α-Fe2O3 have opposite directions for adjacent
terminations, how can Co merons and antimerons be stable in
the presence of surface roughness?

In this paper, we model the combined vortex|meron
and antivortex|antimeron structures we have observed in
α-Fe2O3|Co using micromagnetic simulations. We demon-
strate that Co merons or antimerons are stabilized by an
underlying α-Fe2O3 vortex or antivortex due to a competition
between exchange stiffness, exchange-bias interaction, and
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magnetostatic interaction. Correspondingly, the scale of the
Co features is governed by the two exchange lengths, Lex.b,
which accounts for the field induced by the interface, and
the usual magnetostatic length, Lms. We also determine the
scaling of the meron core with the exchange parameters and
film thickness, and establish that (anti)vortex|meron structures
are stable for rough interfaces, provided that the characteristic
scale of the roughness is less than the exchange lengths.
Finally, we construct simulated scanning probe microscopy
(SPM) images of the Co features using both magnetic force
microscopy (MFM) and nitrogen-vacancy (NV) center mi-
croscopy, and identified characteristic signatures that could
be detected in the experiments. Although our calculations
and simulations are carried out for the α-Fe2O3|Co system,
our methodology is of general validity for exchange-coupled
topological structures, and could be applied to a variety of
systems of interest for oxide electronics and spintronics.
Light-induced metastable vortices [6] are also described by
our analysis as a limiting case in which Lex.b = 0.

The paper is organized as follows: In Sec. II we make
dimensional considerations based on the key physical param-
eters and discuss a simple analytical model of a vortex|meron
structure. In Sec. III, we discuss our approach to micromag-
netic simulations, in particular, providing a conversion be-
tween the atomic-scale and micromagnetic parameters, sim-
ulating surface roughness and constructing simulated SPM
images. Section IV contains the main results concerning
meron stability (also in the presence of surface roughness),
and the scaling of the meron and antimeron cores, as well as
our simulated MFM and NV center microscopy images, and
is followed by a short conclusion.

II. THEORY

A. Brief description of the physical system

Our goal was to model the coupled vortex|meron struc-
tures observed by XMLD/XMCD-PEEM at room temper-
ature (RT) (see Ref. [7]). In this experiment, the physical
system consisted of a 10-nm epitaxial [001] α-Fe2O3 film
grown on sapphire (Al2O3), with 1-nm FM Co capping layer
grown at RT by dc sputtering. The RT magnetic structure
of α-Fe2O3 consists of collinear AFM layers (we ignore the
small in-plane spin canting), stacked along the [001] direction
in a repeated pattern “+ − −+.” All spins are perpendicular
to the stacking direction and are aligned along one of the
symmetry-equivalent {100} directions, so that six equivalent
domains are possible. A network of AFM vortices and antivor-
tices is experimentally observed by XMLD-PEEM, where
six domains meet at a single point. Very similar topological
structures are also observed by XMCD-PEEM in the Co
overlayer exactly on top of the α-Fe2O3 structures and having
the same vorticity (vortex or antivortex character and direction
of rotation). The XMCD-PEEM vector-map intensity (pro-
portional to the in-plane projection of the magnetic moment)
shows a pronounced dip near the FM vortex cores, suggest-
ing the presence of an out-of-plane (z) component, which
is characteristic of merons. Since the size of the observed
meron “cores” (i.e., the region where a sizable z component
exists) was comparable to the typical x-ray PEEM (X-PEEM)

resolution of 20–50 nm, it was not possible to establish the
actual core size with any confidence.

B. Feature sizes: Dimensional considerations

Consistent with our experimental findings, we assume that
Co experiences a bulk FM self-interaction, described by an
exchange stiffness ACo-Co

ex (in J m−1), as well as a surface
interaction with α-Fe2O3 described by an “exchange-bias”
constant KFe-Co

ex.b , having dimensions J m−2 (we drop the un-
ambiguous superscripts in the remainder).

In our simulations, we assume that the domain structures
in α-Fe2O3 are rigid (i.e., not affected by the presence of
the overlayer), that they have much narrower domain walls
than those in Co, and that all the α-Fe2O3 spins lie in plane.
At present, there is no experimental verification for these
assumptions, which may not in fact be entirely correct. In
fact, since the energies of the in-plane and out-of-plane spin
orientations are finely balanced, α-Fe2O3 could even support
AFM merons with an out-of-plane core [12,13], while “re-
verse imprint” of a FM overlayer on an AFM layer has been
previously discussed for other materials [14]. However, such
a coupled problem would be intractable at the micromagnetic
level, while the effect of a finite width of the α-Fe2O3 domain
walls can be easily included in our models, should any solid
experimental evidence emerge. We therefore believe that our
assumptions are justified, in that they provide a simplified but
useful model of the relevant physics.

Initially, we also assume that α-Fe2O3 has a FM termi-
nation with no roughness (we relax this assumption later).
With these assumptions, the other key physical parameter in
the problem is the thickness d of the Co film. From these
parameters, one can construct a length,

Lex.b =
√

Aexd

Kex.b
. (1)

There is also a second length scale in Co, the “conven-
tional” magnetostatic length [15], unrelated to the presence
of α-Fe2O3 and given by

Lms =
√

2Aex

μ0M2
, (2)

where M is the Co magnetization. From this simple analysis
one should conclude that the size of any magnetic feature
in Co should be determined by the competition between two
lengths, Lex.b and Lms, which control the “surface” and “bulk”
physics of the problem, respectively. Moreover, when one of
the lengths is much larger than the other, Co features should
roughly scale with the smaller of the two lengths.

One could test this prediction by calculating, for example,
the shape and width of a Néel domain wall induced by the
presence of a sharp antiphase boundary in the underlying
AFM material. Problems of this kind have been discussed
at the micromagnetic level since the 1960s [16] and involve
differential equations imposing zero torque on each magneti-
zation element [17]. Although finding full analytical solutions
is beyond the scope of this paper (which focuses on numerical
solutions of these equations when Lex.b and Lms are compa-
rable), in Appendixes B and C we present simple solutions
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of the linear domain wall and of the vortex|meron problem,
respectively, assuming the shape of these structures to be a
known function. The linear Néel domain wall problem with
uniform spin rotation is very similar to the well-known calcu-
lation of the width of a Bloch domain wall in the presence of
magnetocrystalline anisotropy [15], and leads to a very similar
result:

WN = π

(
1 − 2

π

)−1/2

Lex.b ≈ 5.21Lex.b, (3)

where Lex.b replaces the usual magnetocrystalline anisotropy
exchange length [15]. Equation (3) is strictly valid in the limit

d
Lex.b

� 1. This is appropriate throughout most of the range we
consider, since we typically set d = 1 nm in agreement with
Ref. [7], while typical domain wall widths in our simulations
are �4 nm. Significant departures from this approximation are
considered in Sec. IV B.

C. Analytical merons

To reinforce the results from the previous section, we
perform an analytical calculation of a “model” meron (or
antimeron) in Co, stabilized by the presence of a planar vortex
(or antivortex) in the adjacent AFM oxide, assuming very
simple functional forms for the z component of the magnetiza-
tion. We demonstrate that the characteristic size of the meron
“core” is indeed proportional to Lex.b. In this calculation,
we disregard the effect of magnetostatic energy (included in
our micromagnetic model; see below), so the calculation is
exactly identical for vortex|meron and antivortex|antimeron
structures.

The general expression for the normalized meron magneti-
zation is

mx = − sin ψ sin φ, my = sin ψ cos φ, mz = cos ψ, (4)

where φ is the polar angle and

tan ψ = F
(

r

R

)
, cos ψ = 1√

F2 + 1
, sin ψ = F√

F2 + 1
.

(5)

Here, F (x) is a continuous function with limx→0 F (x) = 0
and limx→∞ F (x) = ∞, and R is a characteristic scale. In
Appendix C we provide calculations for a number of simple
cases, including the “projective” meron (F (x) = x), which
can be obtained by projecting a “hairy” sphere of radius R
from its center onto a tangent plane [18], and the more general
case in which F (x) is a polynomial. In order to provide a
direct comparison with the linear domain wall, we also discuss
the case of the “linear meron,” where the magnetic moment is
entirely in plane outside a radius R, while inside this radius
it rotates uniformly towards the center of the meron, where it
is aligned along z. As shown in Appendix C, the projective
meron case is unstable, due to the logarithmic energy cost
owing to the swirling spins at large distances, while in all other
cases the width of the meron core scales with the exchange-
bias length Lex.b [see also Eq. (C16)]:

Wcore = 2κ

√
Aexd

Kex.b
= 2κLex.b (6)

with κ ≈ 1.

FIG. 1. Overview of the coupled α-Fe2O3|Co system that was
simulated in this section. The bottom layer is α-Fe2O3 and the figure
shows a vortex (bottom left) and an antivortex (bottom right). Light-
colored lines indicating the direction of the staggered magnetization.
Only the top termination of α-Fe2O3 was included as a fixed layer in
the simulations (see Fig. 2, left panel). Spins in the top Co layer were
set to a random orientation prior to the start of the simulation, and
develop meron and antimeron structures at the end of the simulation,
as shown in the top panels.

III. MICROMAGNETIC MODELING

A. Micromagnetic modeling in OOMMF

Micromagnetic simulations were performed using the pro-
gram OOMMF [19]. No periodic boundary conditions were
employed and the AFM layers were kept fixed throughout
the simulations in all cases. A general overview of the sys-
tem we simulated is provided in Fig. 1. Uniform α-Fe2O3

termination layers were described as having magnetization
of constant magnitude, which rotates counterclockwise (for
vortices) or clockwise (for antivortices) when moving on a
counterclockwise path around the center. The total simulated
area was 200 × 200 nm2 and the discretization cell sizes were
Dxy = 2 nm and Dz = 1 nm, respectively, with the α-Fe2O3

layer being one cell thick. We performed simulations both
with uniformly rotating magnetization and also with constant
magnetization within six equal wedges, which reproduce the
experimental images of AFM vortices and antivortices [7]
(Fig. 2, left-hand panel). The meron structures in the two cases
are extremely similar, although the sharp AFM boundaries
associated with the wedges introduce Néel domain walls (see
below). To model the effect of surface roughness, an addi-
tional set of simulations was performed over 100 × 100 nm2

with Dxy = 0.5 nm in-plane discretization, with the α-Fe2O3

magnetization being reversed within circular islands arranged
on a regular grid (Fig. 2, right-hand panel).

Co layers of different thickness (1–8 nm) were placed in
direct contact with the α-Fe2O3 layer and interacting with
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FIG. 2. Termination layers of AFM α-Fe2O3. Left: Antivortex in
α-Fe2O3 with six distinct wedges (colors or grayscale), as observed
in Ref. [7]. The simulated area is 200 × 200 nm2. Right: Vortex with
uniformly rotating magnetization and circular regions of magnetiza-
tion reversal, introduced to simulate surface roughness. The diameter
of the circular regions (emphasized by the shading) is 6 nm, while the
simulated area is 100 × 100 nm2. Colors or shading emphasize the
moment directions.

it through an exchange stiffness AFe-Co
ex (which is not known

a priori; see below and Appendix A for a full discussion),
so a series of simulations was performed spanning a wide
range of Lex.b. For ACo-Co

ex , we have used the literature value
of 18 pJ m−1 [15]. The Co magnetization is assumed to be
1.4 × 106 J T−1, yielding a magnetostatic exchange length
Lms =

√
2Aex/μ0M2 = 3.8 nm [15]. The magnetization in

each cell was initially set at a random orientation, and it
was then allowed to evolve according to the Landau-Lifshitz-
Gilbert equation [20] until a stable configuration was attained.
Since here we are not interested in magnetization dynamics,
the dimensionless damping factor α should not influence the
outcome; in our simulations, α was set to 0.5—a value that
was empirically found to yield good convergence properties
of the model. The simulation time step was adjusted by the
program in the range 1–100 ps, while the convergence crite-
rion was 5 ns−1. Unless AFe-Co

ex was set to a very small value,
the Co magnetization always formed a meron or antimeron,
with the same vorticity as the underlying vortex or antivortex
in α-Fe2O3 while the core magnetization was randomly up or
down in each simulation run.

Although strictly a technical issue, the implementation of
exchange bias in our micromagnetic simulations deserves a
separate remark, since in OOMMF it is not possible to introduce
the equivalent of Kex.b directly. Instead, the effect of exchange
bias can be reproduced by employing an exchange stiffness
AFe-Co

ex , which acts only on the interface cells between α-Fe2O3

and Co. The only caveat is that AFe-Co
ex is not a physical param-

eter, since it depends on the size of the discretization cell Dz

along the z direction, as discussed at length in Appendix A.
The scaling Kex.b = 2AFe-Co

ex /Dz between AFe-Co
ex and the phys-

ical parameter Kex.b, derived in Appendix A, was verified in a
series of simulations with different Dz.

B. Modeling MFM and NV center microscopy images

Simulated MFM and diamond NV center microscopy im-
ages were produced from meron and antimeron structures
obtained by setting Lex.b = Lms as a representative value.

For MFM, we employed the phase-shift method, whereby
the image is generated based on the shift in phase between the
drive and the cantilever, which is driven close to resonance
[21]. The phase shift is given by the formula

�� = −Q

k

∂Fz

∂z
, (7)

where

F = ∇(μ · H) (8)

is the force on the cantilever tip due to the stray magnetic field
H, and μ is the magnetic moment of the tip. The derivative
of the force was calculated numerically and averaged over
a number of “voxels” comprising the shape of the tip. The
magnetic moment of the tip was kept constant at |μ| = 1.2 ×
10−19 J T−1, while different tip sizes and shapes were tested.
The cantilever spring constant in Eq. (7) was k = 2.8 N m−1,
while the quality factor Q was set at 100, which is much
less than the “bare” cantilever Q but is realistic for room-
temperature measurements in the presence of a water film.

For diamond NV center microscopy, a first set of images
was produced without bias magnetic field, assuming that the
signal is proportional to the magnitude of the projection of
the stray magnetic field along the direction of the defect,
which was aligned with the [111] crystallographic direction
of the diamond [22,23]. The [001] and [110] crystallographic
directions of the diamond were aligned along the z and x axes,
respectively. A second set of images was produced with a
bias field of ∼110 mT along the x direction, such that the
projection of the stray plus bias magnetic field along the defect
never changes sign. This field should be considered an upper
limit of what it is possible to apply experimentally, since a
field of this magnitude on the surface of the sample is likely
to cause meron annihilation [7].

IV. RESULTS

A. Meron and antimeron formation and feature size

Figure 3 shows typical “converged” Co spin configurations
for a meron [Fig. 3(a)] and an antimeron [Fig. 3(b)] stabilized
by an AFM vortex or antivortex, similar to that in Fig. 2
(left-hand panel), using exchange lengths Lex.b = Lms = Lex.b

= 3.8 nm. Figure 3(c) shows the z component of the magne-
tization plotted along a line cutting through the meron core,
while Fig. 3(d) shows the component of the magnetization
perpendicular to the underlying AFM spins, plotted along
a line cutting through a Néel domain wall [lines shown in
Fig. 3(a)] [24]. At the center of the meron or antimeron,
the magnetization is completely aligned along the z axis. For
the meron, Mz is nonzero only near the core, while for the
antimeron there is a sizable Mz component along the two
diagonal lines where the in-plane magnetization is along the
radial direction. Interestingly, the full width at half maximum
(FWHM) of the meron core (6 nm) is smaller than that of the
Néel domain wall (7.7 nm) (this discrepancy is qualitatively
consistent with the analytical results in Appendices B and C).
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FIG. 3. Top: 200 × 200 nm2 OOMMF simulations of (a) a meron
and (b) an antimeron in a 1 nm Co film, with an exchange-bias field
from a hexagonal vortex or antivortex in α-Fe2O3. The exchange-bias
length for the simulations was set at Lex.b = 3.8 nm. Away from the
(anti)meron core, Co spins and Fe spins are parallel. The in-plane
spin component is indicated by the arrows, while the out-of-plane (z)
components are in shaded color (grayscale). Bottom: Profiles of the
magnitudes of Co spin component (c) along z through the meron core
and (d) orthogonal to the Fe spins through a Néel domain boundary.

B. Meron and antimeron core scaling

Having established the basic procedure to produce mi-
cromagnetic simulations of merons and antimerons, we pro-
ceeded to generate a series of structures with different values
of Lex.b, while keeping Lms at the literature value of 3.8 nm.
In establishing an appropriate range for Lex.b, one should
consider that, for an ideal system, the exchange stiffness and
interface energies are related to the microscopic exchange
constants J by the following equations (see Ref. [25]):

ACo-Co
ex = c1

JCo-CoS2
Co

ann
, KCo-Fe

ex.b = c2
JCo-FeSCoSFe

a2
nn

, (9)

where ann is the atomic nearest-neighbor distance, SFe and
SCo are the cobalt and iron spins, while c1 and c2 are small
numbers that depend on the coordination and c1 > c2. In the
approximation of equal exchange constants and spins, for an
ideal system one would have

Lex.b ≈
√

c1

c2
d ann, (10)

so for d = 1 nm it is reasonable to take 1–2 nm as the lower
bound for Lex.b. In a real system, one would expect that KCo-Fe

should be significantly weakened by surface roughness, so we
tested much larger values of Lex.b (up to 35 nm), up until the
point where merons and antimerons ceased to be stable.

Once the models had converged, the meron and antimeron
cores were fitted by two-dimensional pseudo-Voigt functions,
which enabled the FWHM to be extracted systematically. The
results of these fits are summarised in Fig. 4. For very strong
exchange-bias interactions (small values of Lex.b), interface
physics is dominant, and the core size is proportional to Lex.b,

FIG. 4. Full width at half maximum of the meron core as a
function of the exchange-bias length Lex.b, as defined in Eq. (1). The
anisotropy length Lms was set at 3.8 nm for all data points. Open
squares and open circles correspond to Co film thicknesses d of
1 nm and 2 nm, respectively, while crosses are for antimerons with
d = 1 nm. The dashed lines correspond to ∼2.37Lms (horizontal)
and 1.67Lex.b (diagonal). Inset: Meron core FWHM versus distance z
from the interface for an 8-nm Co film with Lex.b = 3.8 nm.

consistent with our analytical calculations (Appendix C). In
fact, the proportionality constant extracted from the initial
slope of the plot (≈1.67) is rather close to the analytical value
of 1.5 [Eq. (C17)]. For larger values of Lex.b, the core size
in increasingly dominated by “bulk” physics, and eventually
saturates at ≈2.37 Lms. Meron and antimeron core sizes are
almost identical for small Lex.b, as one would expect, but
antimeron cores are slightly bigger for larger Lex.b, consistent
with the fact that antivortices have very unfavorable magne-
tostatic energies. Compared to merons, antimerons ultimately
become unstable for smaller values of Lex.b.

For small film thicknesses (1–2 nm), the magnetization is
essentially independent of z and the effect of the thickness d
can be included in the definition of Lex.b given by Eq. (1). For
thicker films, this ceases to be true, as shown in the inset of
Fig. 4, which demonstrates the transition from “surface” to
“bulk” physics within the same film. In the example shown
(Lex.b = 3.8 nm), the meron core is compact in the portion of
the film closer to α-Fe2O3 but flares out as z increases, until it
saturates to the bulk value of ∼2.37Lms.

One conclusion of this section is that the meron and
antimeron core size in Co never exceeds ∼9 nm regardless of
the strength of the interface interaction and the film thickness.
This has very important implications for the possibility of
creating dense meron and antimeron networks (see discussion
at the end of the paper). A second observation is that, based on
our simulations, there is likely to be a difference in the pinning
strength required to keep merons and antimerons pinned to
α-Fe2O3, due to their different magnetostatic energy. This fea-
ture is amenable to be exploited for applications, for example,
to “unpin” one type of particle selectively.

C. Modeling surface roughness

As previously mentioned (see Sec. IV B), our initial as-
sumption of a uniform FM termination for α-Fe2O3 cannot
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FIG. 5. Effect of α-Fe2O3 roughness on the meron structure. 200
× 200 nm2 OOMMF simulation of a meron in a 1-nm-thick Co layer,
stabilized by a “rough” α-Fe2O3 interface. Roughness is simulated
by introducing disklike areas of AFM spin reversal, with a diameter
of 6 nm (dotted lines). The exchange lengths were set at Lex.b =
Lm.s = 3.8 nm. Color intensity is proportional to the out-of-plane
component of the Co moments.

be realistic, since in all but the most perfect epitaxial films
there is always a degree of surface roughness. One may even
question whether merons and antimerons can be stabilized
in the presence of a rough α-Fe2O3 interface, since the sign
of the magnetization in the layer in direct contact with Co
changes sign in different termination layers. Intuitively, one
would expect the lateral scale of the termination terraces to be
an important parameter: features in Co cannot be smaller than
one to two times the relevant exchange length, so the effect
of fine-grained roughness should be to weaken the dominant
exchange-bias interaction without altering the topology of the
Co features. This intuition is confirmed by our micromagnetic
models (shown in Fig. 5), in which surface roughness is
simulated by regions of α-Fe2O3 spin inversion in the shape
of circular “terraces” of 6 nm diameter. In order to prevent the
roughness-related features from being washed out by finite-
scale effects, these simulations were performed on smaller
discretization cells (0.5 nm). As evident from Fig. 5, the shape
of the meron structure in Co is largely unaffected by our model
roughness. The main effect of the terraces is to introduce
a small local distortion and a nonzero z component of the
magnetization—a very reasonable result, since this lowers the
exchange-bias energy at the terrace site.

D. MFM imaging and NV center imaging

Figure 6 shows simulated MFM images of a meron
[Figs. 6(a) and 6(b)] and an antimeron [Figs. 6(c) and 6(d)],
at a tip-to-film working distance of 20 nm, which is typical
for this technique. The tip was modeled as a pyramid with di-
mensions 31 × 31 nm2 base ×31 nm height, and a total mag-
netic moment of 1.2 × 10−19 J T−1. Images were produced

FIG. 6. Simulated MFM images of merons (top) and antimerons
(middle) with both Lex.b and Lani parameters set to 3.8 nm. In all cases,
the magnetic moment of the tip was 1.15 × 10−22 J T−1 and the
working distance was 20 nm. (a, c) Tip magnetized out of the page;
(b, d) tip magnetized in the y direction. Bottom: Images produced us-
ing an NV center tip with the x axis of the sample aligned parallel to
the in-plane projection of the defect, at a working distance of 11 nm:
(e) no bias magnetic field and (f) bias field of ∼110 mT along the
x direction.

with both perpendicular [Figs. 6(a) and 6(c)] and in-plane
[Figs. 6(b) and 6(d)] magnetization of the tip. The meron
core is distinguishable within typical instrumental sensitivity,
albeit significantly broadened by resolution effects. With the
tip magnetization perpendicular to the film [Fig. 6(a)], the
core appears as a disk-shaped area of phase shift, and could
be confused with other MFM features of different origin. By
contrast, when the tip is magnetized in plane, the core displays
a typical region of phase inversion [Fig. 6(b)], which could be
used as a characteristic signature. Somewhat surprisingly, for
antimerons [Figs. 6(c and 6(d)], the X-shaped ridge structure
in the stray field is a much more prominent and recognizable
feature than the core for both perpendicular and parallel tip
magnetization.

Figures 6(e) and 6(f) show simulated NV center mi-
croscopy images of a meron, taken without and with a bias
field in the direction of the defect axis, respectively. The
working distance between the surface and the NV center was
11 nm, which is realistic for a shallow defect. Because this
technique is directly sensitive to the amplitude of the stray
field, edge effects representing an artifact of the 200×200 nm2

simulation region are very prominent in the simulated images.
Nevertheless, details of the meron structure are very evident
and are much less broadened by resolution effects than for
MFM. In addition to the tight meron core, one can also
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clearly distinguish the Néel domain walls, which were all but
invisible in MFM. Both unbiased and field-biased images are
useful and provide complementary information, which can
help unravel the magnetic structure of the meron. The NV
center microscopy technique seems therefore very promising
as an alternative and complement to X-PEEM, which has thus
far been used exclusively to image these structures.

V. CONCLUSIONS

In conclusion, we have produced micromagnetic models
and simulated MFM and NV center microscopy images of
coupled (anti)vortex|(anti)meron structures in α-Fe2O3|Co
heterostructures. Perhaps the most important conclusion of
our analysis is that meron and antimeron cores in Co remain
small (<10 nm) even when the exchange-bias interaction
between AFM and FM layers is extremely weak. The funda-
mental reason for this is that the crossover between surface
and bulk phenomenology (at strong and weak exchange-
bias interactions, respectively) is controlled by two different
length scales, and that the bulk-related magnetostatic length
keeps the FM features small even when the surface-related
exchange-bias length is long. One outcome of this is that
α-Fe2O3|Co heterostructures and similar systems could, in
principle, support very dense topological networks even in
the presence of rough interfaces, which tend to weaken the
net exchange-bias interaction. This is of course precisely
what is wanted for applications, for example, in high-density
magnetic storage.

One obstacle to fast-track development of these systems
is the requirement for scarce X-PEEM beamtime at syn-
chrotron sources to characterize the AFM and FM topological
structures. Our simulated MFM and NV center microscopy
images demonstrate the existence of characteristic features
associated with FM merons and antimerons, which could be
used to complement X-PEEM with much more accessible,
laboratory-based techniques.
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APPENDIX A: EXCHANGE-BIAS PARAMETER
AND MICROMAGNETIC SCALING

In the exchange-bias calculations described in Sec. II B, we
have employed the parameter Kex.b together with the definition
of the exchange-bias energy:

Eex.b =
∫

dσ Kex.b(1 − cos θ ), (A1)

where θ is the angle between the AFM and the FM spins
at the interface. Although in the OOMMF micromagnetic im-
plementation it is not possible to introduce the equivalent of

FIG. 7. Linear domain boundaries in Co (black arrows) induced
by a sharp domain boundary in α-Fe2O3 (white arrows representing
the top uncompensated layer). Top: 180◦ domain boundary. Bottom:
60◦ domain boundary.

Kex.b directly, its effect can be reproduced by employing an
exchange-stiffness parameter AFe-Co

ex , which acts only on the
interface cells between α-Fe2O3 and Co. In order to obtain a
correct scaling of the model, one must be able to relate AFe-Co

ex
(which, as we see, is scale dependent) with the “physical”
parameter Kex.b.

If at the interface the angle between the spins in α-Fe2O3

and those in Co is θ , the discrete gradient term is

(∇ )2 = 1

D2
z

[(cos θ − 1)2 + (sin θ )2] = 2

D2
z

(1 − cos θ ),

(A2)
where Dz is the length of the discretization cell along the z
axis. The energy per unit area is therefore

∂Eex.b

∂σ
= 2AFe-Co

ex

2

D2
z

(1 − cos θ )
DzD2

xy

D2
xy

= 2
AFe-Co

ex

Dz
(1 − cos θ ), (A3)

where Dxy is the length of the discretization cell in the plane
of the film. This is identical to the expression in Eq. (A1) [see
also Eq. (B5)] with the identification Kex.b = 2AFe-Co

ex /Dz. By
performing simulations with different discretization cell sizes,
we have verified that this is indeed the correct scaling factor to
be applied for obtaining the same feature sizes in simulations
with different Dz.

Expressions such as Eqs. (3) and (6) would also enable
a value for Kex.b to be estimated from the feature sizes of
experimental images, assuming that they are not limited by
instrumental resolution.

APPENDIX B: EXCHANGE-BIAS DOMAIN WALLS

Here, we derive the width WN of a Néel domain wall
induced in the Co overlayer by the exchange-bias interaction
in the presence of a sharp 180◦ antiphase AFM domain
boundary in the α-Fe2O3 film, and compare this result with
the well-known, analogous calculation for the width WB of a
Bloch wall in the presence of magnetocrystalline anisotropy.
As discussed in the main text, we assume that the Co magneti-
zation rotates by 180◦ at a constant rate throughout the domain
wall [Fig. 7(a)].

As a first step, we also assume the spin in Co to be co-
aligned along the z axis (perpendicular to the film surface).

144420-7



P. G. RADAELLI et al. PHYSICAL REVIEW B 101, 144420 (2020)

Assuming the AFM spins in α-Fe2O3 to be aligned along ±x,
the magnetization in the domain wall is described as

Mx = M cos θ, My = M sin θ, (B1)

with

θ = π

(
x

WN

)
, (B2)

WN being the full width of the domain wall in the x
direction.

The nonzero components of the gradient of the normalized
magnetization gradients in Co are

∂mx

∂x
= −π

sin θ

WN
,

∂my

∂x
= π

cos θ

WN
. (B3)

The exchange energy is therefore

Eex = Aex

∫ WN

0

(
∂mx

∂x

)2

+
(

∂my

∂x

)2

dv

= Aexπ
2 A
WN

, (B4)

where A = dL is the area of the domain wall. This expression
is identical to the exchange energy for a Bloch domain wall in
the bulk.

We now calculate the exchange-bias energy, subtracting the
FM energy as usual. This results from the following integral
over the area:

Eex.b =
∫

dσ Kex.b(1 − cos θ ), (B5)

where Kex.b is an energy per unit area. Performing the integral
explicitly,

Eex.b = Kex.bL 2
∫ WN /2

0
dx

(
1 − cos π

x

WN

)

= Kex.bWN L

(
1 − 2

π

)
. (B6)

Once again, this expression is very similar to the magne-
tocrystalline anisotropy energy for a Bloch domain wall, with
the caveat that Kex.b is an energy per unit area, while Kan is an
energy per unit volume:

Ean = KanLd
∫ WB

0
dx cos2 π

x

WB

= 1

2
KanWBLd. (B7)

By minimizing the total energy versus the width of the
domain walls, one can easily find

WN = π

(
1 − 2

π

)−1/2
√

Aexd

Kex.b
≈ 5.52Lex.b,

WB = π
√

2

√
Aex

Kan
≈ 4.44Lan, (B8)

which is consistent with the discussion in Sec. II and the
definition of the ‘exchange-bias length in Eq. (1).

Relaxing the assumption that the spin in Co is co-aligned
along the z axis, one can let the width of the domain wall
depend on z, such that

WN (z) = W 0
N + λz + · · · , (B9)

where the z axis originates at the interface and λ is a parameter
to be determined by minimizing the total energy. This problem
is slightly more complex but is tractable analytically. To first
order, one finds that the Co spins remain strictly co-aligned
(i.e., λ = 0) unless d

Lex.b
≈ 1, which is the case for the 8-nm

Co film discussed in Sec. IV B.
For the purpose of comparing with our simulations, it

is also useful to calculate the width of a 60◦ domain wall
[Fig. 7(b)], which is defined by Eq. (B1) together with

θ = π

3

(
x

WN
+ 1

)
. (B10)

A calculation very similar to Eq. (B8) yields

W 60◦
N = π

3

(
1 − 3

π

)−1/2
√

Aexd

Kex.b
≈ 4.93Lex.b. (B11)

The full width at half maximum is

FWHM60◦ = 6

π
arcsin

(
1

4

)
W 60◦

N ≈ 2.38Lex.b. (B12)

APPENDIX C: DETAILED CALCULATION FOR
THE ANALYTICAL MERONS

Our aim here is to calculate the exchange energy difference
between a meron of radius R and a flat vortex with R → 0,
which is expected to be negative, since spins in the meron are
almost parallel near the core. We first discuss the simplest case
of F (x) = x (the “projective” meron). From Eq. (4) we have

mx = − r√
r2 + R2

sin φ, my = r√
r2 + R2

cos φ,

mz = R√
r2 + R2

. (C1)

We also consider the “linear meron” case:

mx = − sin θ sin φ, my = sin θ cos φ, mz = cos θ, (C2)

where

θ =
{πr

2R for r � R
π
2 for r > R.

(C3)

Using the expression for the gradient in cylindrical coor-
dinates we can easily calculate the exchange energy. For
example, for the projective meron,

Eex = Aex

∫
dv

(
∂

∂r

)2

+
(

1

r

∂

∂φ

)2

= 2πAexd
∫

r dr
r2 + 2R2

(r2 + R2)2

= πAexd

(
ln(r2 + R2) − R2

r2 + R2

)∣∣∣∣
∞

0

= πAexd
(

2 lim
r→∞ ln

( r

R

)
+ 1

)
. (C4)

144420-8



MICROMAGNETIC MODELING AND IMAGING OF … PHYSICAL REVIEW B 101, 144420 (2020)

The general expression

Eex = πAexd
(

2 lim
r→∞ ln

( r

R

)
+ c

)
(C5)

holds in a variety of situations; in particular, when F (x) = xn

is a positive power of x, one can show that c = n. Moreover, if
F (x) is zero outside a radius R and R is the only length scale
involved, then Eex must be independent on R due to simple
dimensional considerations.

From Eex, we must subtract the energy of a planar vortex
(R = 0), where it is convenient to replace the lower limit of
integration with a small length a, which is sent to zero at the
end of the calculation. The vortex energy integrated to infinity
is

E∞
vortex = πAexd

(
2 lim

r→∞ ln
( r

a

))
, (C6)

while the vortex energy integrated to a radius R is

ER
vortex = πAexd

(
2 ln

(
R

a

))
. (C7)

By performing the subtraction, one obtains the following
general formula for the pure exchange energy of the core:

�Eex = πAexd

(
−2 ln

(
R

a

)
+ c

)
, (C8)

which is always negative for R 
 a, and

∂�Eex

∂R
= −2πAexd

1

R
. (C9)

We now need to calculate the loss of exchange-bias energy
occurring at the interface with respect to the vortex, due to
the out-of-plane canting, which is obtained by performing the
surface integral in Eq. (B5). With a straightforward calcula-

tion one obtains for the projective meron (F (x) = x)

�Eex.b = π

2
Kex.bR2

(
ln

4r2

R2
− 1

)
, (C10)

which has a logarithmic divergence, due to the fact that the mz

does not decay fast enough away from the core, while for the
quadratic meron (F (x) = x2),

�Eex.b = πKex.bR2 (C11)

and
∂�Eex.b

∂R
= 2πKex.bR. (C12)

For the linear meron, the equivalent expressions are

�Eex.b = 2πKex.b

∫ R

0
r sin

(
πr

2R

)
dr = 8

π
Kex.bR2 (C13)

and
∂�Eex.b

∂R
= 2π

8

π2
Kex.bR. (C14)

We need to minimize the expression

�Etot = �Eex.b + �Eex (C15)
as a function of R, which is easily done with the help of
Eqs. (C9), (C12), and (C14), yielding

Rmin = κ

√
Aexd

Kex.b
= κLex.b, (C16)

where κ = 1 for the quadratic meron and κ = π
√

2/4 ≈ 1.11
for the linear meron.

The linear meron can be directly compared with the lin-
ear Néel domain wall by observing that the lengths over
which the spins rotate by 180◦ are WN ≈ 5.52Lex.b [Eq. (B8)]
and Wcore = 2Rmin ≈ 2.22Lex.b [Eq. (C16)]. Another useful
quantity is the FWHM of the Mz peak, which is directly
comparable to our simulations. A very simple analysis yields

FWHM = 2
3Wcore ≈ 1.5Lex.b. (C17)
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