9 research outputs found

    Phenomenology of the <VVP> Green's function within the Resonance Chiral Theory

    Get PDF
    We analyse the odd-intrinsic-parity effective Lagrangian of QCD valid for processes involving one pseudoscalar with two vector mesons described in terms of antisymmetric tensor fields. Substantial information on the odd-intrinsic-parity couplings is obtained by constructing the vector-vector-pseudoscalar Green's three-point function, at leading order in 1/N_C, and demanding that its short-distance behaviour matches the corresponding OPE result. The QCD constraints thus enforced allow us to predict the decay amplitude omega -> pi gamma, the O(p^6) corrections to pi -> gamma gamma and the slope parameter in pi -> gamma gamma^*.Comment: 4 pages, 1 figure. Talk given at QCD 03: High-Energy Physics International Conference in Quantum Chromodynamics, Montpellier, France, 2-8 Jul 200

    pi/K -> e nu branching ratios to O(e^2 p^4) in Chiral Perturbation Theory

    Full text link
    We calculate the ratios R_{e/mu}^{(P)} = Gamma(P -> e nu)/Gamma (P -> mu nu) (P=pi,K) in Chiral Perturbation Theory to order e^2 p^4. We complement the one- and two-loop effective theory results with a matching calculation of the local counterterm, performed within the large-NCN_C expansion. We find R_{e/mu}^{(\pi)} = (1.2352 \pm 0.0001)*10^{-4} and R_{e/mu}^{(K)} = (2.477 \pm 0.001)*10^{-5}, with uncertainty induced by the matching procedure and chiral power counting. Given the sensitivity of upcoming new measurements, our results provide a clean baseline to detect or constrain effects from weak-scale new physics in these rare decays. As a by-product, we also update the theoretical analysis of the individual pi/K -> \ell nu modes.Comment: 40 pages, 4 figures, 3 table

    The <SPP> Green function and SU(3) breaking in Kl3 decays

    Get PDF
    Using the 1=/N-C expansion scheme and truncating the hadronic spectrum to the lowest-lying resonances, we match a meromorphic approximation to the Green function onto QCD by imposing the correct large-momentum falloff, both off- shell and on the relevant hadron mass shells. In this way we determine a number of chiral low-energy constants of O(p(6)), in particular the ones governing SU(3) breaking in the K-l3 vector form factor at zero momentum transfer. The main result of our matching procedure is that the known loop contributions largely dominate the corrections of O(p(6)) to f(+)(0). We discuss the implications of our final value f(+)(K0 pi-) (0) = 0.984 +/- 0.012 for the extraction of V-us from K-l3 decays

    Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians

    Full text link
    We pursue the analysis of a set of generalized DGMLY sum rules for the electromagnetic chiral parameters at order e2p2e^2p^2 and discuss implications for effective Lagrangians with resonances. We exploit a formalism in which charge spurions are introduced and treated as sources. We show that no inconsistency arises from anomalies up to quadratic order in the spurions. We focus on the sum rules associated with QCD 4-point correlators which were not analyzed in detail before. Convergence properties of the sum rules are deduced from a general analysis of the form of the counterterms in the presence of electromagnetic spurions. Following the approach in which vector and axial-vector resonances are described with antisymmetric tensor fields and have a chiral order, we show that the convergence constraints are violated at chiral order four and can be satisfied by introducing a set of terms of order six. The relevant couplings get completely and uniquely determined from a set of generalized Weinberg sum-rule relations. An update on the corrections to Dashen's low-energy theorem is given.Comment: 42 pages, 1 figure. v2: references adde

    Form Factors in the radiative pion decay

    Get PDF
    We perform an analysis of the form factors that rule the structure-dependent amplitude in the radiative pion decay. The resonance contributions to pion -> e nu_e gamma decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions VVP and VAP, and by demanding the smoothing of the form factors at high transfer of momentum. A comparison between theoretical and experimental determinations of the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor form factor. We conclude that, at present and due to the hadronic incertitudes, the search for New Physics in this process is not feasible.Comment: 14 pages, no figures. Typos corrected. Accepted for publication in The European Physical Journal

    On different lagrangian formalisms for vector resonances within chiral perturbation theory

    Get PDF
    We study the relation of vector Proca field formalism and antisymmetric tensor field formalism for spin-one resonances in the context of the large N_C inspired chiral resonance Lagrangian systematically up to the order O(p6) and give a transparent prescription for the transition from vector to antisymmetric tensor Lagrangian and vice versa. We also discuss the possibility to describe the spin-one resonances using an alternative "mixed" first order formalism, which includes both types of fields simultaneously, and compare this one with the former two. We also briefly comment on the compatibility of the above lagrangian formalisms with the high-energy constraints for concrete VVP correlator.Comment: 34 pages, 3 figure

    e+e- annihilation to (pi0 pi0 gamma) and (pi0 eta gamma) as a source of information on scalar and vector mesons

    Full text link
    We present a general framework for the model-independent decomposition of the fully differential cross section of the reactions e+e- -> gamma* -> (pi0 pi0 gamma) and e+e- -> gamma* -> (pi0 eta gamma), which can provide important information on the properties of scalar mesons: f0(600), f0(980) and a0(980). For the model-dependent ingredients in the differential cross section, an approach is developed, which relies on Resonance Chiral Theory with vector and scalar mesons. Numerical results are compared to data. The framework is convenient for development of a Monte Carlo generator and can also be applied to the reaction e+e- -> gamma* -> (pi+ pi- gamma).Comment: 15 pages, 12 Figures, 4 Tables; LaTeX svjour style; update to the version accepted for publication in the European Physical Journal
    corecore