721 research outputs found
Limitations of the Standard Gravitational Perfect Fluid Paradigm
We show that the standard perfect fluid paradigm is not necessarily a valid
description of a curved space steady state gravitational source. Simply by
virtue of not being flat, curved space geometries have to possess intrinsic
length scales, and such length scales can affect the fluid structure. For modes
of wavelength of order or greater than such scales eikonalized geometrical
optics cannot apply and rays are not geodesic. Covariantizing thus entails not
only the replacing of flat space functions by covariant ones, but also the
introduction of intrinsic scales that were absent in flat space. In principle
it is thus unreliable to construct the curved space energy-momentum tensor as
the covariant generalization of a geodesic-based flat spacetime energy-momentum
tensor. By constructing the partition function as an incoherent average over a
complete set of modes of a scalar field propagating in a curved space
background, we show that for the specific case of a static, spherically
symmetric geometry, the steady state energy-momentum tensor that ensues will in
general be of the form
where the
anisotropic is a symmetric, traceless rank two tensor which
obeys . Such a type term is absent for an
incoherently averaged steady state fluid in a spacetime where there are no
intrinsic length scales, and in principle would thus be missed in a
covariantizing of a flat spacetime . While the significance of such
type terms would need to be evaluated on a case by case basis,
through the use of kinetic theory we reassuringly find that the effect of such
type terms is small for weak gravity stars where perfect fluid
sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the
final publication is available at http://www.springerlink.com). 29 pages, 1
figur
Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying
We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations
Complete Order alpha_s^3 Results for e^+ e^- to (gamma,Z) to Four Jets
We present the next-to-leading order (O(alpha_s^3)) perturbative QCD
predictions for e^+e^- annihilation into four jets. A previous calculation
omitted the O(alpha_s^3) terms suppressed by one or more powers of 1/N_c^2,
where N_c is the number of colors, and the `light-by-glue scattering'
contributions. We find that all such terms are uniformly small, constituting
less than 10% of the correction. For the Durham clustering algorithm, the
leading and next-to-leading logarithms in the limit of small jet resolution
parameter y_{cut} can be resummed. We match the resummed results to our
fixed-order calculation in order to improve the small y_{cut} prediction.Comment: Latex2e, 17 pages with 5 encapsulated figures. Note added regarding
subsequent related work. To appear in Phys. Rev.
Thread-Scalable Evaluation of Multi-Jet Observables
A leading-order, leading-color parton-level event generator is developed for
use on a multi-threaded GPU. Speed-up factors between 150 and 300 are obtained
compared to an unoptimized CPU-based implementation of the event generator. In
this first paper we study the feasibility of a GPU-based event generator with
an emphasis on the constraints imposed by the hardware. Some studies of Monte
Carlo convergence and accuracy are presented for PP -> 2,...,10 jet observables
using of the order of 1e11 events.Comment: 16 pages, 5 figures, 3 table
Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains
Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry
in the rate function of either the time-averaged entropy production or heat
dissipation of a process. Such theorems have been proved for various general
classes of continuous-time deterministic and stochastic processes, but always
under the assumption that the forces driving the system are time independent,
and often relying on the existence of a limiting ergodic distribution. In this
paper we extend the asymptotic fluctuation theorem for the first time to
inhomogeneous continuous-time processes without a stationary distribution,
considering specifically a finite state Markov chain driven by periodic
transition rates. We find that for both entropy production and heat
dissipation, the usual Gallavotti-Cohen symmetry of the rate function is
generalized to an analogous relation between the rate functions of the original
process and its corresponding backward process, in which the trajectory and the
driving protocol have been time-reversed. The effect is that spontaneous
positive fluctuations in the long time average of each quantity in the forward
process are exponentially more likely than spontaneous negative fluctuations in
the backward process, and vice-versa, revealing that the distributions of
fluctuations in universes in which time moves forward and backward are related.
As an additional result, the asymptotic time-averaged entropy production is
obtained as the integral of a periodic entropy production rate that generalizes
the constant rate pertaining to homogeneous dynamics
Evolution of high-frequency gravitational waves in some cosmological models
We investigate Isaacson's high-frequency gravitational waves which propagate
in some relevant cosmological models, in particular the FRW spacetimes. Their
time evolution in Fourier space is explicitly obtained for various metric forms
of (anti--)de Sitter universe. Behaviour of high-frequency waves in the
anisotropic Kasner spacetime is also described.Comment: 14 pages, 8 figures, to appear in Czech. J. Phy
Remarks Concerning the Study of Four-Jet Events from Hadronic Decays of the Z0
The angular correlations of four-jet events from hadronic decays of the Z0
have been studied in the past mainly to extract from them the fundamental
constants of quantum chromodynamics called colour factors. Previous studies
have used all the available phase-space in order to maximize statistics. In
this note we want to point out the possibility that significant differences
between experiment and theory in restricted regions of phase-space might have
escaped detection. Such differences could be a harbinger of the existence of
new particles. Some preliminary results are presented.Comment: 9 pages, 3 figure
WMAP constraint on the P-term inflationary model
In light of WMAP results, we examine the observational constraint on the
P-term inflation. With the tunable parameter , P-term inflation contains
richer physics than D-term and F-term inflationary models. We find the
logarithmic derivative spectral index with on large scales and on
small scales in agreement to observation. We obtained a reasonable range for
the choice of the gauge coupling constant in order to meet the requirements
of WMAP observation and the expected number of the e-foldings. Although tuning
and we can have larger values for the logarithmic derivative of the
spectral index, it is not possible to satisfy all observational requirements
for both, the spectral index and its logarithmic derivative at the same time.Comment: 6 pages, double column, 13 figures included. Version appearing in the
Physical Review
Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data
Event Shape Data from annihilation into hadrons collected by the
JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used
to determine the strong coupling . QCD predictions complete to
next-to-next-to-leading order (NNLO), alternatively combined with resummed
next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The
combined value from six different event shape observables at the six JADE
centre-of-mass energies using the NNLO calculations is
= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.)
+/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is
= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/-
0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to
missing higher order contributions, studied by variations of the
renormalisation scale, is improved compared to previous results obtained with
NLO+NLLA or with NLO predictions only. The observed energy dependence of
agrees with the QCD prediction of asymptotic freedom and excludes
absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version
with JADE author lis
The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)
Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery.
Biological significance:
Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD
- …