770 research outputs found
Productivity and movements of Nene in the Ka'u Desert, Hawaii Volcanoes National Park
Western Region, National Park Servic
Mesoscopic transport beyond linear response
We present an approach to steady-state mesoscopic transport based on the
maximum entropy principle formulation of nonequilibrium statistical mechanics.
Our approach is not limited to the linear response regime. We show that this
approach yields the quantization observed in the integer quantum Hall effect at
large currents, which until now has been unexplained. We also predict new
behaviors of non-local resistances at large currents in the presence of dirty
contacts.Comment: 14 pages plus one figure (with an insert) (post-script codes
appended), RevTeX 3.0, UCF-CM-93-004 (Revised
Generic theory of colloidal transport
We discuss the motion of colloidal particles relative to a two component
fluid consisting of solvent and solute. Particle motion can result from (i) net
body forces on the particle due to external fields such as gravity; (ii) slip
velocities on the particle surface due to surface dissipative phenomena. The
perturbations of the hydrodynamic flow field exhibits characteristic
differences in cases (i) and (ii) which reflect different patterns of momentum
flux corresponding to the existence of net forces, force dipoles or force
quadrupoles. In the absence of external fields, gradients of concentration or
pressure do not generate net forces on a colloidal particle. Such gradients can
nevertheless induce relative motion between particle and fluid. We present a
generic description of surface dissipative phenomena based on the linear
response of surface fluxes driven by conjugate surface forces. In this
framework we discuss different transport scenarios including self-propulsion
via surface slip that is induced by active processes on the particle surface.
We clarify the nature of force balances in such situations.Comment: 22 pages, 1 figur
Long-term stress-strain response of chalk:a micro-mechanical interpretation
A long-term laboratory test programme of conventional compression and extension tests was carried out with test durations from 8 to 22-months, in a purpose built environmentally controlled facility, with specially designed loading frames and modified triaxial cells. In addition, Scanning Electron Microscope (SEM) techniques were employed in an effort to investigate the micro-mechanical res-ponse. Creep strains appeared to trigger an ageing process that produces elevated post-creep strength and stiffness irrespective of the ap-plied stress path
Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors
It is predicted that certain atomically ordered interfaces between some
ferromagnetic metals (F) and semiconductors (S) should act as ideal spin
filters that transmit electrons only from the majority spin bands or only from
the minority spin bands of the F to the S at the Fermi energy, even for F with
both majority and minority bands at the Fermi level. Criteria for determining
which combinations of F, S and interface should be ideal spin filters are
formulated. The criteria depend only on the bulk band structures of the S and F
and on the translational symmetries of the S, F and interface. Several examples
of systems that meet these criteria to a high degree of precision are
identified. Disordered interfaces between F and S are also studied and it is
found that intermixing between the S and F can result in interfaces with spin
anti-filtering properties, the transmitted electrons being much less spin
polarized than those in the ferromagnetic metal at the Fermi energy. A patent
application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure
Search for the decay in the momentum region
We have searched for the decay in the kinematic
region with pion momentum below the peak. One event was
observed, consistent with the background estimate of . This
implies an upper limit on
(90% C.L.), consistent with the recently measured branching ratio of
, obtained using the standard model
spectrum and the kinematic region above the peak. The
same data were used to search for , where is a weakly
interacting neutral particle or system of particles with .Comment: 4 pages, 2 figure
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
Menus for Feeding Black Holes
Black holes are the ultimate prisons of the Universe, regions of spacetime
where the enormous gravity prohibits matter or even light to escape to
infinity. Yet, matter falling toward the black holes may shine spectacularly,
generating the strongest source of radiation. These sources provide us with
astrophysical laboratories of extreme physical conditions that cannot be
realized on Earth. This chapter offers a review of the basic menus for feeding
matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
We study the solutions of the gap equation, the thermodynamic potential and
the chiral susceptibility in and beyond the chiral limit at finite chemical
potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation
between the chiral susceptibility and the thermodynamic potential in the NJL
model. We find that the chiral susceptibility is a quantity being able to
represent the furcation of the solutions of the gap equation and the
concavo-convexity of the thermodynamic potential in NJL model. It indicates
that the chiral susceptibility can identify the stable state and the
possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
- …