60 research outputs found
Yield conditions for deformation of amorphous polymer glasses
Shear yielding of glassy polymers is usually described in terms of the
pressure-dependent Tresca or von Mises yield criteria. We test these criteria
against molecular dynamics simulations of deformation in amorphous polymer
glasses under triaxial loading conditions that are difficult to realize in
experiments. Difficulties and ambiguities in extending several standard
definitions of the yield point to triaxial loads are described. Two
definitions, the maximum and offset octahedral stresses, are then used to
evaluate the yield stress for a wide range of model parameters. In all cases,
the onset of shear is consistent with the pressure-modified von Mises
criterion, and the pressure coefficient is nearly independent of many
parameters. Under triaxial tensile loading, the mode of failure changes to
cavitation.Comment: 9 pages, 8 figures, revte
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Peptide Delivery to Tissues via Reversibly Linked Protein Transduction Sequences
The development of peptide-based therapeutics has suffered from challenges associated with delivery to intact tissue. In skin, an array of protein targets resides only tens of micrometers below the surface; however, because of difficulties in traversing the cutaneous barrier, the potential for peptide-based therapeutics remains unrealized. We have developed a general approach for topical peptide delivery into skin using releasable protein transduction sequences to enable peptide transport across tissue boundaries. Upon entry into the cell, the disulfide linkage between the peptide transduction sequences and peptide cargo is cleaved, permitting the dissociation of the highly charged peptide transduction sequences from the active peptide. A prototype cargo peptide, the hemagglutinin (HA) epitope, was conjugated to a hepta-arginine protein transduction sequence via a releasable disulfide linkage. This construct penetrated the skin to deep dermis within 1 h after topical application. Consistent with the dissociation of the protein transduction and cargo sequences, absorbed protein transduction sequences and HA peptides displayed differential intracellular localization. Reversible protein transduction sequence linkage thus represents a noninvasive platform for tissue delivery of intact peptides with no requirement for viral vectors or parenteral injection and may be of broad utility in molecular therapy
- …