807 research outputs found
Building a no limit Texas hold'em poker agent based on game logs using supervised learning
The development of competitive artificial Poker players is a challenge to Artificial Intelligence (AI) because the agent must deal with unreliable information and deception which make it essential to model the opponents to achieve good results. In this paper we propose the creation of an artificial Poker player through the analysis of past games between human players, with money involved. To accomplish this goal, we defined a classification problem that associates a given game state with the action that was performed by the player. To validate and test the defined player model, an agent that follows the learned tactic was created. The agent approximately follows the tactics from the human players, thus validating this model. However, this approach alone is insufficient to create a competitive agent, as generated strategies are static, meaning that they can't adapt to different situations. To solve this problem, we created an agent that uses a strategy that combines several tactics from different players. By using the combined strategy, the agentgreatly improved its performance against adversaries capable of modeling opponents
Warm Dark Matter from keVins
We propose a simple model for Warm Dark Matter (WDM) in which two fermions
are added to the Standard Model: (quasi-) stable "keVins" (keV inert fermions)
which account for WDM and their unstable brothers, the "GeVins" (GeV inert
fermions), both of which carry zero electric charge and lepton number, and are
(approximately) "inert", in the sense that their only interactions are via
suppressed couplings to the Z. We consider scenarios in which stable keVins are
thermally produced and their abundance is subsequently diluted by entropy
production from the decays of the heavier unstable GeVins. This mechanism could
be implemented in a wide variety of models, including E_6 inspired
supersymmetric models or models involving sterile neutrinos.Comment: 32 pages, 9 figures, 2 table
Thermal Background Corrections to the Neutrino Electromagnetic Vertex in Models with Charged Scalar Bosons
We calculate the correction to the neutrino electromagnetic vertex due to
background of electrons in a large class of models, as the supersymmetric model
with explicit breaking of R-parity, where charged scalar bosons couple to
leptons and which are able to provide an astrophysically interesting value for
the neutrino magnetic (electric) moment, . We show
that the medium contribution to the chirality flipping magnetic (electric)
dipole moment is not significant, however a new chirality flipping, but
helicity conserving, term arises. It signals the presence of and
asymmetries in the medium and is associated to the longitudinal
photon and therefore disappears in the vacuum. We estimate the contribution of
this new term to the rate of the plasmon decay process in the core of degenerate stars, showing that it can be comparable with
the contribution coming from the vacuum magnetic (dipole) moment. We also
calculate the correction to the effective potential of a propagating neutrino
in presence of a magnetic field due to a chirality preserving contribution to
the diagonal magnetic moment from the medium. This contribution is identical
for particles and antiparticles and so need not to vanish for Majorana
neutrinos.Comment: DFPD 93/TH/75, SISSA 93/183/A preprint, 25 pages + 4 figures
available by e-mail reques
Geochemical and physical sources of radon variation in a subterranean estuary — implications for groundwater radon activities in submarine groundwater discharge studies
Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 110 (2008): 120-127, doi:10.1016/j.marchem.2008.02.011.Submarine groundwater discharge (SGD), in form of springs and diffuse seepage,
has long been recognized as a source of chemical constituents to the coastal ocean.
Because groundwater is two to four orders of magnitude richer in radon than surface
water, it has been used as both a qualitative and a quantitative tracer of groundwater
discharge. Besides this large activity gradient, the other perceived advantage of radon
stems from its classification as noble gas; that is, its chemical behavior is expected not to
be influenced by salinity, redox, and diagenetic conditions present in aquatic
environments.
During our three-year monthly sampling of the subterranean estuary (STE) in
Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across
the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon
activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal
fluctuations in activity at depths where elevated radon was observed. We postulate that
most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the
accumulation of this radium is likely regulated by the presence of manganese
(hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone
(STZ), where water with high salinity, high manganese, and low redox potential mixes
with fresh water. Responding to the seasonality of aquifer recharge, the location of the
STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal
land- or bay-ward movement of the freshwater lens. This results in seasonal changes in
the depth where elevated radon activities are observed.
The conclusion of our study is that the freshwater part of the STE has a radon
signature that is completely different from the STZ or recirculated sea water. Therefore,
the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in
the discharging groundwater.This work is a
result of research sponsored by NSF (OCE- 0425061 to M.A.C.) and the WHOI
Postdoctoral Scholar program (to H.D.)
Long Baseline Neutrino Physics with a Muon Storage Ring Neutrino Source
We examine the physics capabilities of known flavor neutrino beams from
intense muon sources. We find that long-baseline neutrino experiments based on
such beams can provide precise measurements of neutrino oscillation mass and
mixing parameters. Furthermore, they can test whether the dominant atmospheric
neutrino oscillations are \nu_\mu --> \nu_\tau and/or \nu_\mu --> \nu_s,
determine the \nu_\mu --> \nu_e content of atmospheric neutrino oscillations,
and measure \nu_e --> \nu_\tau appearance. Depending on the oscillation
parameters, they may be able to detect Earth matter and CP violation effects
and to determine the ordering of some of the mass eigenstates.Comment: 38 pages, Revtex with epsf.sty, 21 postscript figures. Minor text
revisions, some new numbers in Tables II and II
Quasars and their host galaxies
This review attempts to describe developments in the fields of quasar and
quasar host galaxies in the past five. In this time period, the Sloan and 2dF
quasar surveys have added several tens of thousands of quasars, with Sloan
quasars being found to z>6. Obscured, or partially obscured quasars have begun
to be found in significant numbers. Black hole mass estimates for quasars, and
our confidence in them, have improved significantly, allowing a start on
relating quasar properties such as radio jet power to fundamental parameters of
the quasar such as black hole mass and accretion rate. Quasar host galaxy
studies have allowed us to find and characterize the host galaxies of quasars
to z>2. Despite these developments, many questions remain unresolved, in
particular the origin of the close relationship between black hole mass and
galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update
Tight-binding parameters for charge transfer along DNA
We systematically examine all the tight-binding parameters pertinent to
charge transfer along DNA. The molecular structure of the four DNA bases
(adenine, thymine, cytosine, and guanine) is investigated by using the linear
combination of atomic orbitals method with a recently introduced
parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are
discussed and then used for calculating the corresponding wavefunctions of the
two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO
and LUMO energies of the bases are in good agreement with available
experimental values. Our results are then used for estimating the complete set
of charge transfer parameters between neighboring bases and also between
successive base-pairs, considering all possible combinations between them, for
both electrons and holes. The calculated microscopic quantities can be used in
mesoscopic theoretical models of electron or hole transfer along the DNA double
helix, as they provide the necessary parameters for a tight-binding
phenomenological description based on the molecular overlap. We find that
usually the hopping parameters for holes are higher in magnitude compared to
the ones for electrons, which probably indicates that hole transport along DNA
is more favorable than electron transport. Our findings are also compared with
existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
The response of nematodes to deep-sea CO2 sequestration : a quantile regression approach
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 57 (2010): 696-707, doi:10.1016/j.dsr.2010.03.003.One proposed approach to ameliorate the effects of global warming is sequestration of
the greenhouse gas CO2 in the deep sea. To evaluate the environmental impact of this
approach, we exposed the sediment-dwelling fauna at the mouth of the Monterey
Submarine Canyon (3262 m) and a site on the nearby continental rise (3607 m) to CO2-
rich water. We measured meiobenthic nematode population and community metrics
after ~30-day exposures along a distance gradient from the CO2 source and with
sediment depth to infer the patterns of mortality. We also compared the nematode
response with that of harpacticoid copepods. Nematode abundance, average sediment
depth, tail-group composition, and length: width ratio did not vary with distance from
the CO2 source. However, quantile regression showed that nematode length and
diameter increased in close proximity to the CO2 source in both experiments. Further,
the effects of CO2 exposure and sediment depth (nematodes became more slender at
one site, but larger at the other, with increasing depth in the sediment) varied with body
size. For example, the response of the longest nematodes differed from those of
average length. We propose that nematode body length and diameter increases were
induced by lethal exposure to CO2-rich water and that nematodes experienced a high
rate of mortality in both experiments. In contrast, copepods experienced high mortality
rates in only one experiment suggesting that CO2 sequestration effects are taxon
specific.The Department of Energy
Office of Biological and Environmental Research supported this research under award
numbers DE‐FG02‐05ER64070 and DE‐FG03‐01ER63065 and the U.S. Department of
Energy, Fossil Energy Group (award DE‐FC26‐00NT40929). We also appreciate
significant support provided by the Monterey Bay Aquarium Research Institute (project
200002)
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
- …