26 research outputs found

    Global Carbon Budget 2018

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018

    Identification of paracrine neuroprotective candidate proteins by a functional assay-driven proteomics approach.

    No full text
    Glial cells support neuronal survival and function by secreting neurotrophic cytokines. Retinal Mueller glial cells (RMGs) support retinal neurons, especially photoreceptors. These highly light-sensitive sensory neurons receive vision, and their death results in blinding diseases. It has been proposed that RMGs release factors that support photoreceptor survival, but the nature of these factors remains to be elucidated. To discover such neurotrophic factors, we developed an integrated work flow toward systematic identification of neuroprotective proteins, which are, like most cytokines, expressed only in minute amounts. This strategy can be generally applied to identify secreted bioactive molecules from any body fluid once a recipient cell for this activity is known. Toward this goal we first isolated conditioned medium (CM) from primary porcine RMGs cultured in vitro and tested for survival-promoting activity using primary photoreceptors. We then developed a large scale, microplate-based cellular high content assay that allows rapid assessment of primary photoreceptor survival concomitant with biological activity in vitro. The enrichment strategy of bioactive proteins toward their identification consists of several fractionation steps combined with tests for biological function. Here we combined 1) size fractionation, 2) ion exchange chromatography, 3) reverse phase liquid chromatography, and 4) mass spectrometry (Q-TOF MS/MS or MALDI MS/MS) for protein identification. As a result of this integrated work flow, the insulin-like growth factor-binding proteins IGFBP5 and IGFBP7 and connective tissue growth factor (CTGF) were identified as likely candidates. Cloning and stable expression of these three candidate factors in HEK293 cells produced conditioned medium enriched for either one of the factors. IGFBP5 and CTGF, but not IGFBP7, significantly increased photoreceptor survival when secreted from HEK293 cells and when added to the original RMG-CM. This indicates that the survival-promoting activity in RMG-CM is multifactorial with IGFBP5 and CTGF as an integral part of this activity

    Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse.

    No full text
    Retinitis pigmentosa (RP) is an inherited blinding disease for which there is no treatment available. It is characterized by a progressive and neurodegenerative loss of photoreceptors but the underlying mechanisms are poorly understood. Excessive activation of the enzyme poly(ADP-ribose) polymerase (PARP) has recently been shown to be involved in several neuropathologies. To investigate the possible role of PARP in retinal photoreceptor degeneration, we used the retinal degeneration 1 (rd1) mouse RP model to study PARP expression, PARP activity, and to test the effects of PARP inhibition on photoreceptor viability. PARP expression was found to be equal between rd1 and wild-type counterpart retinas. In contrast to this, a dramatic increase in both PARP activity per se and PARP product formation was detected by in situ assays in rd1 photoreceptors actively undergoing cell death. Furthermore, PARP activity colabeled with oxidatively damaged DNA and nuclear translocation of AIF (apoptosis-inducing factor), suggesting activation of PARP as a bridge between these events in the degenerating photoreceptors. The PARP-specific inhibitor PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide x HCl[ reduced the number of cells exhibiting death markers in a short-term retinal culture paradigm, a protective effect that was translated into an increased number of surviving photoreceptors when the inhibitor was used in a long-term culture setting. Our results thus demonstrate an involvement of PARP activity in rd1 photoreceptor cell death, which could have a bearing on the understanding of neurodegenerations as such. The findings also suggest that the therapeutical possibilities of PARP inhibition should include retinal diseases like RP

    Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Get PDF
    International audienceModeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and sub-surface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, OR-CHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics

    Synthesising plausible futures for biodiversity and ecosystem services in Europe and Central Asia using scenario archetypes

    No full text
    Scenarios are a useful tool to explore possible futures of social-ecological systems. The number of scenarios has increased dramatically over recent decades, with a large diversity in temporal and spatial scales, purposes, themes, development methods, and content. Scenario archetypes generically describe future developments and can be useful in meaningfully classifying scenarios, structuring and summarizing the overwhelming amount of information, and enabling scientific outputs to more effectively interface with decision-making frameworks. The Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) faced this challenge and used scenario archetypes in its assessment of future interactions between nature and society. We describe the use of scenario archetypes in the IPBES Regional Assessment of Europe and Central Asia. Six scenario archetypes for the region are described in terms of their driver assumptions and impacts on nature (including biodiversity) and its contributions to people (including ecosystem services): business-as-usual, economic optimism, regional competition, regional sustainability, global sustainable development, and inequality. The analysis shows that trade-offs between nature’s contributions to people are projected under different scenario archetypes. However, the means of resolving these trade-offs depend on differing political and societal value judgements within each scenario archetype. Scenarios that include proactive decision making on environmental issues, environmental management approaches that support multifunctionality, and mainstreaming environmental issues across sectors, are generally more successful in mitigating trade-offs than isolated environmental policies. Furthermore, those scenario archetypes that focus on achieving a balanced supply of nature’s contributions to people and that incorporate a diversity of values are estimated to achieve more policy goals and targets, such as the UN Sustainable Development Goals and the Convention on Biological Diversity Aichi targets. The scenario archetypes approach is shown to be helpful in supporting science-policy dialogue for proactive decision making that anticipates change, mitigates undesirable trade-offs, and fosters societal transformation in pursuit of sustainable development
    corecore