1,813 research outputs found

    Dephasing of Electrons on Helium by Collisions with Gas Atoms

    Full text link
    The damping of quantum effects in the transport properties of electrons deposited on a surface of liquid helium is studied. It is found that due to vertical motion of the helium vapour atoms the interference of paths of duration tt is damped by a factor exp⁡−(t/τv)3\exp - (t/\tau_v)^3. An expression is derived for the weak-localization lineshape in the case that damping occurs by a combination of processes with this type of cubic exponential damping and processes with a simple exponential damping factor.Comment: 7 pages, 2 figures, Revte

    Reducing wild dog impacts on livestock production industries

    Get PDF
    Wild dogs are a huge problem for Australian livestock producers, costing farmers an estimated $50 million annually in livestock losses and for their control. Here we describe outcomes of a recent project that has examined aspects of wild dog control in WA

    Planning and Local Government Law Update

    Get PDF
    Editor's note: This article is compiled from material published by Maupin. Taylor, Ellis & Adams, P.A. Includes: Court Finds No Review Possible on Denial of Special Use Permit; First Town in the U.S. Sued by the Justice Department for Antitrust Violations; Statutes Protecting a Developer's Opportunity to Develop Property; Court Upholds a Town's Right to Provide Water Service in Competition with a Private Company; County Held Responsible for the Taking of a Driveway Easement; Court Finds That City Satisfies the "Public Benefit" Test

    Enlarged Galilean symmetry of anyons and the Hall effect

    Full text link
    Enlarged planar Galilean symmetry, built of both space-time and field variables and also incorporating the ``exotic'' central extension is introduced. It is used to describe non-relativistic anyons coupled to an electromagnetic field. Our theory exhibits an anomalous velocity relation of the type used to explain the Anomalous Hall Effect. The Hall motions, characterized by a Casimir of the enlarged algebra, become mandatory for some critical value(s) of the magnetic field. The extension of our scheme yields the semiclassical effective model of the Bloch electron.Comment: LaTeX, 7 pages. No figures. One more reference adde

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures

    Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway.

    Get PDF
    In oxygenic phototrophs, chlorophylls, hemes, and bilins are synthesized by a common branched pathway. Given the phototoxic nature of tetrapyrroles, this pathway must be tightly regulated, and an important regulatory role is attributed to magnesium chelatase enzyme at the branching between the heme and chlorophyll pathway. Gun4 is a porphyrin-binding protein known to stimulate in vitro the magnesium chelatase activity, but how the Gun4-porphyrin complex acts in the cell was unknown. To address this issue, we first performed simulations to determine the porphyrin-docking mechanism to the cyanobacterial Gun4 structure. After correcting crystallographic loop contacts, we determined the binding site for magnesium protoporphyrin IX. Molecular modeling revealed that the orientation of α6/α7 loop is critical for the binding, and the magnesium ion held within the porphyrin is coordinated by Asn-211 residue. We also identified the basis for stronger binding in the Gun4-1 variant and for weaker binding in the W192A mutant. The W192A-Gun4 was further characterized in magnesium chelatase assay showing that tight porphyrin binding in Gun4 facilitates its interaction with the magnesium chelatase ChlH subunit. Finally, we introduced the W192A mutation into cells and show that the Gun4-porphyrin complex is important for the accumulation of ChlH and for channeling metabolites into the chlorophyll biosynthetic pathway

    Deuteron Electroweak Disintegration

    Get PDF
    We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail: [email protected] , [email protected]

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed

    Studies on the stereochemical assignment of 3-acylidene 2-oxindoles

    Get PDF
    The designation of E/Z-geometrical isomers in 3-acylidene 2-oxindoles by NMR spectroscopy can lead to erroneous assignment of alkene stereochemistry because of the narrow chemical shift range observed over a large series of analogues. In contrast, UV-Vis spectroscopy offers a convenient and more reliable method for alkene stereochemical assignment. A combination of X-ray crystallography and theoretical studies shows that the observed differences in UV-Vis spectroscopic behaviour relate to the twisted conformation of the Z-isomers that provides reduced conjugation and weaker hypsochromic (blue-shifted) absorbances relative to those of the E-isomers
    • 

    corecore