201 research outputs found

    Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy

    Get PDF
    The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10−12, OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 × 10−6, OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39×10−7, OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10−61, OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57×10−76, OR = 8.84), and in NOTCH4 with ACA P = 8.84×10−21, OR = 0.55) and ATA (P = 1.14×10−8, OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.This work was supported by the following grants: J Martin was funded by GEN-FER from the Spanish Society of Rheumatology, SAF2009-11110 from the Spanish Ministry of Science, CTS-4977 from Junta de AndalucıŽa, Spain, and in part by Redes TemaÂŽticas de InvestigacioÂŽn Cooperativa Sanitaria Program, RD08/0075 (RIER) from Instituto de Salud Carlos III (ISCIII), Spain. TRDJ Radstake was funded by the VIDI laureate from the Dutch Association of Research (NWO) and Dutch Arthritis Foundation (National Reumafonds). J Martin and TRDJ Radstake were sponsored by the Orphan Disease Program grant from the European League Against Rheumatism (EULAR). BPC Koeleman is supported by the Dutch Diabetes Research Foundation (grant 2008.40.001) and the Dutch Arthritis Foundation (Reumafonds, grant NR 09-1-408). BZ Alizadeh is supported by the Netherlands Organization for Health Research and Development (ZonMW grant 016.096.121). Genotyping of the Dutch control samples was sponsored by US National Institutes of Mental Health funding, R01 MH078075 (ROA). The German controls were from the PopGen biobank (to BPC Koeleman). The PopGen project received infrastructure support through the German Research Foundation excellence cluster ‘‘Inflammation at Interfaces.’’ The USA studies were supported by NIH/NIAMS Scleroderma Family Registry and DNA Repository (N01-AR-0-2251), NIH/NIAMS-RO1-AR055258, NIH/NIAMS Center of Research Translation in Scleroderma (1P50AR054144), and the Department of Defense Congressionally Directed Medical Research Programs (W81XWH-07-01-0111). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Outcomes and comorbidities of SCN1A-related seizure disorders

    Get PDF
    PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis

    Identification of candidate genes for developmental colour agnosia in a single unique family

    Get PDF
    Colour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family. For three family members with developmental colour agnosia and three unaffected family members CGH-array analysis and exome sequencing was performed, and linkage analysis was carried out using DominantMapper, resulting in the identification of 19 cosegregating chromosomal regions. Whole exome sequencing resulted in 11 rare coding variants present in all affected family members with developmental colour agnosia and absent in unaffected members. These variants affected genes that have been implicated in neural processes and functions (CACNA2D4, DDX25, GRINA, MYO15A) or that have an indirect link to brain function, development or disease (MAML2, STAU1, TMED3, RABEPK), and a remaining group lacking brain expression or involved in non-neural traits (DEPDC7, OR1J1, OR8D4). Although this is an explorative study, the small set of candidate genes that could serve as a starting point for unravelling mechanisms of higher level cognitive functions and cortical specialization, and disorders therein such as developmental colour agnosia

    Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux

    Get PDF
    Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR

    De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy

    Get PDF
    Purpose This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. Methods Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. Results Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. Conclusion Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients

    Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis.

    Get PDF
    Introduction: The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods: In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results: No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions: Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc

    Common Variation in ISL1 Confers Genetic Susceptibility for Human Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant–common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations

    A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides

    Get PDF
    Introduction. Rheumatoid arthritis (RA) patients can be classified based on presence or absence of anticitrullinated peptide antibodies (ACPA) in their serum. This heterogeneity among patients may reflect important biological differences underlying the disease process. To date, the majority of genetic studies have focused on the ACPA-positive group. Therefore, our goal was to analyse the genetic risk factors that contribute to ACPA-negative RA. Methods. We performed a large-scale genome-wide association study (GWAS) in three Caucasian European cohorts comprising 1148 ACPA-negative RA patients and 6008 controls. All patients were screened using the Illumina Human Cyto-12 chip, and controls were genotyped using different genome-wide platforms. Population-independent analyses were carried out by means of logistic regression. Meta-analysis with previously published data was performed as follow-up for selected signals (reaching a total of 1922 ACPA-negative RA patients and 7087 controls). Imputation of classical HLA alleles, aminoacid residues and single nucleotide polymorphisms was undertaken. Results. The combined analysis of the studied cohorts resulted in identification of a peak of association in the HLA-region and several suggestive non-HLA associations. Meta-analysis with previous reports confirmed the association of the HLA region with this subset and an observed association in the CLYBL locus remained suggestive. The imputation and deep interrogation of the HLA region led to identification of a two aminoacid model (HLA-B at position 9 and HLA-DRB1 at position 11) that accounted for the observed genome-wide associations in this region. Conclusions. Our study shed light on the influence of the HLA region in ACPA-negative RA and identified a suggestive risk locus for this condition
    • 

    corecore