9,657 research outputs found

    Cosmic ray spectral hardening due to dispersion in the source injection spectra

    Full text link
    Recent cosmic ray (CR) experiments discovered that the CR spectra experience a remarkable hardening for rigidity above several hundred GV. We propose that this is caused by the superposition of the CR energy spectra of many sources that have a dispersion in the injection spectral indices. Adopting similar parameters as those of supernova remnants derived from the Fermi γ\gamma-ray observations, we can reproduce the observational CR spectra of different species well. This may be interpreted as evidence to support the supernova remnant origin of CRs below the knee. We further propose that the same mechanism may explain the "ankle" of the ultra high energy CR spectrum.Comment: 5 pages, 3 figures and 1 table. Updated with the diffusion propagation model, accepted by Phys. Rev.

    Non-intrusive stochastic analysis with parameterized imprecise probability models: I. Performance estimation

    Get PDF
    © 2019 Elsevier Ltd Uncertainty propagation through the simulation models is critical for computational mechanics engineering to provide robust and reliable design in the presence of polymorphic uncertainty. This set of companion papers present a general framework, termed as non-intrusive imprecise stochastic simulation, for uncertainty propagation under the background of imprecise probability. This framework is composed of a set of methods developed for meeting different goals. In this paper, the performance estimation is concerned. The local extended Monte Carlo simulation (EMCS) is firstly reviewed, and then the global EMCS is devised to improve the global performance. Secondly, the cut-HDMR (High-Dimensional Model Representation) is introduced for decomposing the probabilistic response functions, and the local EMCS method is used for estimating the cut-HDMR component functions. Thirdly, the RS (Random Sampling)-HDMR is introduced to decompose the probabilistic response functions, and the global EMCS is applied for estimating the RS-HDMR component functions. The statistical errors of all estimators are derived, and the truncation errors are estimated by two global sensitivity indices, which can also be used for identifying the influential HDMR components. In the companion paper, the reliability and rare event analysis are treated. The effectiveness of the proposed methods are demonstrated by numerical and engineering examples

    Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis

    Get PDF
    © 2019 Elsevier Ltd Structural reliability analysis for rare failure events in the presence of hybrid uncertainties is a challenging task drawing increasing attentions in both academic and engineering fields. Based on the new imprecise stochastic simulation framework developed in the companion paper, this work aims at developing efficient methods to estimate the failure probability functions subjected to rare failure events with the hybrid uncertainties being characterized by imprecise probability models. The imprecise stochastic simulation methods are firstly improved by the active learning procedure so as to reduce the computational costs. For the more challenging rare failure events, two extended subset simulation based sampling methods are proposed to provide better performances in both local and global parameter spaces. The computational costs of both methods are the same with the classical subset simulation method. These two methods are also combined with the active learning procedure so as to further substantially reduce the computational costs. The estimation errors of all the methods are analyzed based on sensitivity indices and statistical properties of the developed estimators. All these new developments enrich the imprecise stochastic simulation framework. The feasibility and efficiency of the proposed methods are demonstrated with numerical and engineering test examples

    Far-infrared optical properties of the pyrochlore spin ice compound Dy2Ti2O4

    Full text link
    Near normal incident far-infrared reflectivity spectra of [111] dysprosium titanate (Dy2Ti2O4) single crystal have been measured at different temperatures. Seven phonon modes (eight at low temperature) are identified at frequency below 1000 cm-1. Optical conductivity spectra are obtained by fitting all the reflectivity spectra with the factorized form of the dielectric function. Both the Born effective charges and the static optical primitivity are found to increase with decreasing temperature. Moreover, phonon linewidth narrowering and phonon modes shift with decreasing temperature are also observed, which may result from enhanced charge localization. The redshift of several low frequency modes is attributed to the spin-phonon coupling. All observed optical properties can be explained within the framework of nearest neighbor ferromagnetic(FM) spin ice model

    Prescription Opioid Abuse in Prison Settings: A Systematic Review of Prevalence, Practice and Treatment Responses

    Get PDF
    Background To systematically review the quantitative and qualitative evidence base pertaining to the prevalence, practice of, and treatment response to the diversion of prescribed opiates in the prison setting. Methods Medline, Embase, CINAHL, PsycINFO, Google Scholar, ASSIA and Science Direct databases were searched for papers from 1995 to the present relevant to the abuse of prescribed opiate medication. Identified journals and their reference lists were hand searched for other relevant articles. Of the abstracts identified as relevant, full text papers were retrieved and critiqued against the inclusion criteria for the review. Results Three hundred and fifty-five abstracts were identified, leading to 42 full-text articles being retrieved. Of those, 10 papers were included in the review. Significant differences in abuse behaviours between different countries were reported. However, a key theme emerged from the data regarding a culture of nasal administration of prescribed sublingual buprenorphine within some prisons due to 3 both reduced prevalence of injection within prison and reduced supplies of illicit drugs within prison. The buprenorphine/naloxone preparation appears to be less amenable to abuse. The review highlighted a paucity of empirical research pertaining to both prevalence of the phenomenon and treatment responses. Clinical and research implications Healthcare providers within prisons need to prescribe opioids in the least abuseable preparation since the risk of abuse is significant, despite widespread processes of supervised dispensing. Prescription medication abuse is not limited to opioids and the predominant drug of abuse in an individual prison can rapidly change according to availability

    Nature of light correlations in ghost imaging

    Full text link
    We investigate the nature of correlations in Gaussian light sources used for ghost imaging. We adopt methods from quantum information theory to distinguish genuinely quantum from classical correlations. Combining a microscopic analysis of speckle-speckle correlations with an effective coarse-grained description of the beams, we show that quantum correlations exist even in `classical'-like thermal light sources, and appear relevant for the implementation of ghost imaging in the regime of low illumination. We further demonstrate that the total correlations in the thermal source beams effectively determine the quality of the imaging, as quantified by the signal-to-noise ratio.Comment: 12 pages, 5 figures. To appear in Scientific Reports (NPG

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    On higher analogues of Courant algebroids

    Full text link
    In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM⊕∧nT∗MTM\oplus\wedge^nT^*M for an mm-dimensional manifold. As an application, we revisit Nambu-Poisson structures and multisymplectic structures. We prove that the graph of an (n+1)(n+1)-vector field π\pi is closed under the higher-order Dorfman bracket iff π\pi is a Nambu-Poisson structure. Consequently, there is an induced Leibniz algebroid structure on ∧nT∗M\wedge^nT^*M. The graph of an (n+1)(n+1)-form ω\omega is closed under the higher-order Dorfman bracket iff ω\omega is a premultisymplectic structure of order nn, i.e. \dM\omega=0. Furthermore, there is a Lie algebroid structure on the admissible bundle A⊂∧nT∗MA\subset\wedge^{n}T^*M. In particular, for a 2-plectic structure, it induces the Lie 2-algebra structure given in \cite{baez:classicalstring}.Comment: 13 page
    • …
    corecore