54 research outputs found

    Large basis ab initio shell model investigation of 9-Be and 11-Be

    Full text link
    We are presenting the first ab initio structure investigation of the loosely bound 11-Be nucleus, together with a study of the lighter isotope 9-Be. The nuclear structure of these isotopes is particularly interesting due to the appearance of a parity-inverted ground state in 11-Be. Our study is performed in the framework of the ab initio no-core shell model. Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to 9\hbar\Omega, are shown. For both nuclei, and all potentials, we reach convergence in the level ordering of positive- and negative-parity spectra separately. Concerning their relative position, the positive-parity states are always too high in excitation energy, but a fast drop with respect to the negative-parity spectrum is observed when the model space is increased. This behavior is most dramatic for 11-Be. In the largest model space we were able to reach, the 1/2+ level has dropped down to become either the first or the second excited state, depending on which interaction we use. We also observe a contrasting behavior in the convergence patterns for different two-nucleon potentials, and argue that a three-nucleon interaction is needed to explain the parity inversion. Furthermore, large-basis calculations of 13-C and 11-B are performed. This allows us to study the systematics of the position of the first unnatural-parity state in the N=7 isotone and the A=11 isobar. The 11-B run in the 9\hbar\Omega model space involves a matrix with dimension exceeding 1.1 x 10^9, and is our largest calculation so far. We present results on binding energies, excitation spectra, level configurations, radii, electromagnetic observables, and 10-Be+n overlap functions.Comment: 17 pages, 12 figures To be published in Phys. Rev. C Resubmitted version. Minor change

    Converging sequences in the ab initio no-core shell model

    Full text link
    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for AA-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei

    Obesogenic dietary intake in families with 1-year-old infants at high and low obesity risk based on parental weight status: baseline data from a longitudinal intervention (Early STOPP)

    Get PDF
    PURPOSE: To compare dietary intake in 1-year-old infants and their parents between families with high and low obesity risk, and to explore associations between infant dietary intake and relative weight. METHODS: Baseline analyses of 1-year-old infants (n = 193) and their parents participating in a longitudinal obesity intervention (Early STOPP) were carried out. Dietary intake and diet quality indicators were compared between high- and low-risk families, where obesity risk was based on parental weight status. The odds for high diet quality in relation to parental diet quality were determined. Associations between measured infant relative weight and dietary intake were examined adjusting for obesity risk, socio-demographics, and infant feeding. RESULTS: Infant dietary intake did not differ between high- and low-risk families. The parents in high-risk families consumed soft drinks, French fries, and low-fat spread more frequently, and fish and fruits less frequently (p < 0.05) compared to parents in low-risk families. Paternal intake of vegetables and fish increased the odds for children being consumers of vegetables (OR 1.7; 95 % CI 1.0-2.9) and fish, respectively (OR 2.5; 95 % CI 1.4-4.4). Infant relative weight was weakly associated with a high intake of milk cereal drink (r = 0.15; p < 0.05), but not with any other aspect of dietary intake, obesity risk, or early feeding patterns. CONCLUSIONS: At the age of one, dietary intake in infants is not associated with family obesity risk, nor with parental obesogenic food intake. Milk cereal drink consumption but no other infant dietary marker reflects relative weight at this young age.published_or_final_versio

    Systematics of 2+ states in C isotopes from the ab initio no-core shell model

    Full text link
    We study low-lying states of even carbon isotopes in the range A = 10 - 20 within the large- scale no-core shell model (NCSM). Using several accurate nucleon-nucleon (NN) as well as NN plus three-nucleon (NNN) interactions, we calculate excitation energies of the lowest 2+ state, the electromagnetic B(E2; 2+1 -> 0+1) transition rates, the 2+1 quadrupole moments as well as se- lected electromagnetic transitions among other states. Recent experimental campaigns to measure 2+-state lifetimes indicate an interesting evolution of nuclear structure that pose a challenge to reproduce theoretically from first principles. Our calculations do not include any effective charges or other fitting parameters. However, calculated results extrapolated to infinite model spaces are also presented. The model-dependence of those results is discussed. Overall, we find a good agree- ment with the experimentally observed trends, although our extrapolated B(E2; 2+1 -> 0+1) value for 16C is lower compared to the most recent measurements. Relative transition strengths from higher excited states are investigated and the influence of NNN forces is discussed. In particular for 16C we find a remarkable sensitivity of the transition rates from higher excited states to the details of the nuclear interactions.Comment: 22 pages, 8 figures, preprint version. Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Three-Body Halo States in Effective Field Theory: Renormalization and Three-Body Interactions in the Helium-6 System

    Get PDF
    In this paper we study the renormalization of Halo effective field theory applied to the Helium-6 halo nucleus seen as an alpha-neutron-neutron three-body state. We include the 0(+) dineutron channel together with both the 3/2(-) and 1/2(-) neutron-alpha channels into the field theory and study all of the six lowest-order three-body interactions that are present. Furthermore, we discuss three different prescriptions to handle the unphysical poles in the P-wave two-body sector. In the simpler field theory without the 1/2(-) channel present we find that the bound-state spectrum of the field theory is renormalized by the inclusion of a single three-body interaction. However, in the field theory with both the 3/2(-) and 1/2(-) included, the system can not be renormalized by only one three-body operator

    Quantum-based realizations of the pascal: status and progress of the EMPIR-project: quantumpascal

    Get PDF
    The QuantumPascal (QP) project combines the capabilities of 12 European institutions to enable traceable pressure measurements utilizing quantum-based methods that evaluate the number density instead of force per area to target the wide pressure range between 1 Pa and 3 MPa. This article summarizes the goals and results since the project start in June 201
    corecore