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Abstract In this paper we study the renormalization of Halo effective field theory applied to the Helium-6
halo nucleus seen as an α–neutron–neutron three-body state. We include the 0+ dineutron channel together
with both the 3/2− and 1/2− neutron–α channels into the field theory and study all of the six lowest-order
three-body interactions that are present. Furthermore, we discuss three different prescriptions to handle the
unphysical poles in the P-wave two-body sector. In the simpler field theory without the 1/2− channel present
we find that the bound-state spectrum of the field theory is renormalized by the inclusion of a single three-
body interaction. However, in the field theory with both the 3/2− and 1/2− included, the system can not be
renormalized by only one three-body operator.

1 Introduction

Effective field theory (EFT) has become a widely used tool to construct interactions for few-body problems
in atomic and nuclear physics. Examples are the nucleon-nucleon interaction constructed using Chiral EFT
[1,2] and the atom-atom interaction for systems with a large scattering length [3,4]. The properties of the
corresponding three-body systems are usually obtained by the solution of the Faddeev equation. Halo nuclei
[5,6] have become another arena for the application of EFTs. These are systems of tightly bound cores with
weakly bound valence nucleons that can be found close to the neutron and proton driplines. Halo EFT uses
the ratio of the valence-nucleon separation energy and the binding of the core as the expansion parameter for
the low-energy EFT expansion. The core and valence nucleons are then the effective degrees of freedom used
within this approach and the complexity of the problem is significantly reduced. An advantage of this approach
is that the uncertainties of the model can be systematically reduced, by including more terms in the low-energy
expansion.

Halo EFT has previously been applied to resonant two-body systems [7–10], one-neutron halos [11–14]
and one-proton halos [15–18]. The ground state of Helium-6 has also been analyzed in Halo EFT, both by
Rotureau and van Kolck [19] and by Ji et al. [20]. Additional efforts on two-neutron halos can be found in
Refs. [21–23].

One major tenet of EFTs is that observables have to be independent of any short-distance regulators.
Such regulators have to be introduced to deal with the singularities that a low-momentum expansion typically
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introduces. One important consequence of this requirement is that operators frequently have to be promoted
to lower order than naively expected from their mass dimension. One well-known example is the three-
boson system where naive dimensional analysis implies that the three-body interaction should enter at N2LO.
However, as was shown in an EFT treatment in Ref. [24] this interaction is needed already at LO for the theory
to be renormalized.

Another problem that can occur in few-body systems is the appearance of spurious bound states in the
two-body subsystem at cutoffs larger than the breakdown scale. This happens for example in the deuteron
system when a chiral potential with a large momentum-space cutoff is employed, but also in Halo EFT when
systems that interact resonantly in a relative P-wave are considered. For example, in the case of a low-lying
P-wave two-body resonance one can fix the P-wave scattering length and effective range such that the two-body
propagator reproduces this resonance. However, the denominator of such a propagator is then an order-three
polynomial, which implies that additional two-body poles are present in the theory.

The Halo EFT analysis of the Helium-6 system is one example for which spurious bound states have
become an immediate problem. The neutron–α interaction is resonant in the P-wave and the resulting two-
body t-matrix has three poles in the complex plane with one of them being unphysical. In previous efforts it
was suggested to remove the unitarity piece ik3 from the denominator of the P-wave propagator, see Ref. [8].
This prescription is possible if only one fine-tuning is assumed and it is restricted to LO. We propose and
discuss two additional prescriptions.

In this paper, we derive (for the first time) the complete field-theoretical equations for the Helium-6 system
from appropriate diagrammatics. The two-body sector is renormalized by fitting the low-energy constants
to the resonance position and width of the Helium-5 system and the neutron–neutron scattering length. In
Refs. [19,20], the Helium-6 system was renormalized with the simplest possible three-body counterterm
and an analysis of other possible operators was omitted. Here, we perform a renormalization analysis of the
bound-state spectrum, investigating all of the six lowest-order three-body interactions that are present. We also
compare the three different prescriptions of how to treat the unphysical P-wave poles in the two-body sector.

This manuscript is organized as follows: In Sect. 2, we discuss the EFT used to describe the Helium-
6 system and its renormalization in the two-body sector. In Sect. 3 we analyze the renormalization of the
three-body system. Finally, a conclusion is provided in Sect. 4.

2 Method

In this section, we present a framework for the treatment of the bound 0+ ground state of 6He, which has a
two-neutron separation energy of 1 MeV. It can be viewed as consisting of an α particle and two neutrons. The
one-nucleon separation energy and the first excited state of the α particle are both at ∼20 MeV, which defines
the break-down scale in energy. Thus we have a good separation of scales. We include the S-wave dineutron
channel and both the 3/2− and 1/2− channels of the P-wave neutron–α interaction. These two channels
correspond to the two low-lying resonances of 5He, with energy positions and widths E (3/2−) = 0.798 MeV,
Γ (3/2−) = 0.648 MeV, E (1/2−) = 2.07 MeV and Γ (1/2−) = 5.57 MeV, respectively [25]. We expect that the
3/2− is more important than the 1/2− channel, since it is lower in energy.

2.1 Lagrangian

The fields that are included in this field theory are the 1/2+ neutron, nσ , the 0+ α core, c, the 0+ dineutron
field, b, the 5He(3/2−) field, da , and the 5He(1/2−) field, d̃σ . The spin indices are defined as σ = −1/2, 1/2
and a = −3/2,−1/2, 1/2, 3/2. We will also use χ as a spin-1/2 and b as a spin-3/2 index, together with
i, j = −1, 0, 1 as spin-1 indices.

We write the Lagrangian for the 0+ channel of 6He as a sum of Lagrangian parts

L = L(1) + L(2) + L(3). (1)

The one-body part is given by

L(1) = c†
[
i∂t + ∇2

8m

]
c + n†

σ

[
i∂t + ∇2

2m

]
nσ + · · · , (2)
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where the neutron, nσ , has a mass m and the core, c, has a mass 4m. The dots refer to relativistic one-body
corrections and higher-order effects due to the alpha-particle binding energy.

The two-body Lagrangian is given by

L(2) = d†
a

[
Δ1 + ν1

(
i∂t + ∇2

10m

)]
da + g1Caiχ

[
d†
a c

(
4

5
i
−→∇ i − 1

5
i
←−∇ i

)
nχ + h.c.

]

+ d̃†
σ

[
Δ̃1 + ν̃1

(
i∂t + ∇2

10m

)]
d̃σ + g̃1Cσ

iχ

[
d̃†
σ c

(
4

5
i
−→∇ i − 1

5
i
←−∇ i

)
nχ + h.c.

]

+ b†Δ0b + 1

2
g0C0

σχ

(
b†nσnχ + h.c.

) + · · · . (3)

The parameters Δ1, ν1 and g1 define the neutron–α P-wave interaction in the 3/2− channel and Δ̃1, ν̃1 and g̃1
define the neutron–α P-wave interaction in the 1/2− channel. The parameters ν1 = ±1, ν̃1 = ±1 are needed in
order to allow both negative and positive effective ranges for purely real g1 and g̃1. The low-energy constants
Δ0 and g0 define the neutron–neutron S-wave interaction in the 0+ channel. Note that the neutron–neutron
interaction is treated at LO, that is without the effective-range correction. We define the Clebsch–Gordan
coefficients according to Caiχ = 〈1i 1

2χ |(1 1
2 ) 3

2a〉, Cσ
iχ = 〈1i 1

2χ |(1 1
2 ) 1

2σ 〉 and C0
σχ = 〈 1

2σ 1
2χ |( 1

2
1
2 )00〉. The

derivative operators ( 4
5 i

−→∇ i − 1
5 i

←−∇ i ) ensure that the interactions are in the P-wave channel and that the
Lagrangian obeys Galilean invariance. The dots refer to higher-order two-body interactions.

For the three-body part of the Lagrangian we have

L(3) = h1C0
aχ iC0

a′χ ′i ′
(
d†
a i

←→∇ i n
†
χ

) (
da′ i

←→∇ i ′nχ ′
)

+ h2C0
σχ iC0

a′χ ′i ′
[(

d̃†
σ i

←→∇ i n
†
χ

) (
da′ i

←→∇ i ′nχ ′
)

+ h.c.
]

+ h3C0
σχ iC0

σ ′χ ′i ′
(
d̃†
σ i

←→∇ i n
†
χ

) (
d̃σ ′ i

←→∇ i ′nχ ′
)

+ h4b
†c†bc

+ h5C0
aχ i

[(
d†
a i

←→∇ i n
†
χ

)
bc + h.c.

]

+ h6C0
σχ i

[(
d̃†
σ i

←→∇ i n
†
χ

)
bc + h.c.

]
+ · · · . (4)

Here we have defined the Galilean invariant P-wave interaction operators as
←→∇ = 5

6
−→∇ − 1

6
←−∇ . The triple-

subscriptC objects are defined according toC0
aχ i = C j

aχC0
j i andC0

σχ i = C j
σχC0

j i . The terms that we have included

in L(3) are the lowest-order three-body interactions. This can be seen by analyzing the scaling dimension of the
fields and operators. The matter fields n and c have dimension 3/2, the S-wave dicluster field b has dimension
2, and the P-wave dicluster fields have dimension 1. Combining this with the dimension-1 derivative operators
it is clear that all terms in the Lagrangian part (4) are of dimension 7, and that other possible three-body
interactions are of higher dimension. A naive estimate for the order that a new operator enters the low-energy
EFT expansion can be obtained by comparing its scaling dimension to the dimension of the Lagrangian. The
difference between these dimensions gives then the powers of the short-distance length scale in the low-energy
coefficient of the operator under consideration. A non-relativistic Lagrangian dimension has mass dimension
5 and a naive counting of the dimension of the leading three-body terms implies that they should enter at
N2LO.1 However, in order to achieve proper renormalization we need to promote at least one of them to LO.
We will discuss this further in Sect. 3. Note that in previous treatments of 6He only the h1 term has been
considered [19,20].

2.2 Two-Body Physics

We begin by considering the two-body sector of the field theory. This amounts to writing down the relevant
dicluster propagators, that is the dineutron propagator and the 5He propagators for the 3/2− and 1/2− channels.
We then discuss how to remove the unphysical pole of the P-wave propagators, using one of three prescriptions.

1 Note that for this argument we took the anomalous scaling dimensions of two-body operators into account.
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(b) (c)(a)

Fig. 1 Elastic scattering in the two-body subsystems of 6He. a The neutron–neutron scattering diagram. The full dineutron
propagator is denoted by the double line. b The neutron–α elastic scattering diagram in the 3/2− channel. The full 5He(3/2−)
dicluster propagator is denoted by the double line with internal bottom-to-top right tilted lines. c The neutron–α elastic scattering
diagram in the 1/2− channel. The full 5He(1/2−) dicluster propagator is denoted by the double line with internal bottom-to-top
left tilted lines.

The dineutron subsystem: For the neutron–neutron interaction we restrict ourselves to the S-wave interaction
at LO. This interaction has an unnaturally large scattering length, a0 = −18.9 fm [26], which means that we
must resum the interaction to infinite order. The resulting full LO dineutron propagator is therefore given by
a geometric series, which we write in closed form as

i B(E,p) = i

Δ0 + Σ0(E,p)
. (5)

The irreducible self-energy, Σ0, is given by

Σ0(E,p) = g2
0m

2π2

⎡
⎣L1 − iπ

2

√
mE − p2

4

⎤
⎦ , (6)

with a divergence L1, defined by

Ln =
∫

dppn−1. (7)

This divergence is absorbed in the renormalization of the parameter Δ0. The scattering diagram is given in
Fig. 1a where the double line defines the full dineutron propagator. The propagator (5) is given for a four-
momentum (E,p).

By matching to ERE parameters, i.e. the neutron–neutron scattering length a0, we write the full dineutron
propagator as

B(E, p) = 4π

g2
0m

1

1
a0

+ i

√
m

(
E − p2

4m

) , (8)

which is the expression that we will use in actual calculations. The effective range r0 is assumed to scale as
∼1/khi and will therefore enter at next-to-leading order (NLO) and give a correction ∼r0/a0 [1].

The 5He subsystem: For a P-wave interaction we need to also include the ν1 term of the Lagrangian part
(3) to achieve proper renormalization. This term gives the effective range contribution. The LO full dicluster
propagators for the P-wave 3/2− channel is thus written as

i D(E, p) = i

Δ1 + ν1

(
E − p2

10m

)
+ Σ1(E,p)

, (9)

where the irreducible self energy is given by

Σ(E, p) = 4g2
1m

15π2

[
L3 +

(
8mE

5
− 4p2

25

)
L1 − iπ

2

(
8mE

5
− 4p2

25

)3/2
]

. (10)

Note that the propagator (9) is written as a geometric series in closed form, similar to the dineutron propagator
(5). In the P-wave irreducible self-energy (10) there are two independent divergences, given by the divergent
integrals L1 and L3. In the renormalization of the parameters Δ1 and g1 these divergent terms are absorbed,
but one should note that this is the reason for why the effective range is needed at LO for the P-wave interaction



Three-Body Halo States in Effective Field Theory Page 5 of 12 143

to be properly renormalized. Matching the dicluster propagator (9) to the scattering t-matrix we can write the
propagator using the ERE parameters, scattering length a1 and effective range r1, according to

D(E, p) = 15π

2mg2
1

1

1
a1

− 1
2r1

(
8mE

5 − 4p2

25

)
+ i

(
8mE

5 − 4p2

25

)3/2 . (11)

The 3/2− P-wave scattering diagram is given in Fig. 1b where we also define the 3/2− dicluster propagator
as the double line with internal bottom-to-top right-tilted lines.

The 1/2− dicluster propagator is given in the same fashion as

D̃(E, p) = 15π

2mg̃2
1

1

1
ã1

− 1
2 r̃1

(
8mE

5 − 4p2

25

)
+ i

(
8mE

5 − 4p2

25

)3/2 , (12)

with ã1 and r̃1 the corresponding scattering length and effective range, respectively. The 1/2− scattering
diagram is shown in Fig. 1c, where the double line with internal bottom-to-top left-tilted lines defines the 1/2−
dicluster propagator.

We extract the ERE parameters for the P-wave channels by matching the 5He resonances to the pole positions
of the dicluster propagators (11) and (12). The resulting values are a1 = −76.12 fm3, r1 = −141.84 MeV,
ã1 = −60.37 fm3 and r̃1 = 66.87 MeV. Note however that the denominators of the dicluster propagators
are given by third order polynomials. As such, there is also an unphysical pole for both the 3/2− and 1/2−
channel. These poles need to be removed if we are to perform three-body calculations using such dicluster
propagators.

We now turn to the discussion of three different prescriptions of how to handle the unphysical pole of a
P-wave propagator. The first method we denote as the unitarity piece removal prescription (UP), since this
prescription removes the ik3 term in the denominator of the dicluster propagator. The reason for why this is
permissable is that at low momentum the unitarity piece scales as ik3 ∼ k3

lo while the other two terms scale
according to 1/a1 ∼ k2

lokhi ∼ r1k2, by assumption. Therefore, at LO, we may neglect the unitarity piece. Note
however that this prescription is only valid if the scalings of the ERE parameters are as stated. Otherwise the
unphysical pole must be handled in some other way. The resulting propagator in the UP is

D(UP)(E,p) = 15π

2mg2
1

1
1
a1

− 1
2r1k2

, (13)

where k =
√

8mE
5 − 4p2

25 . As can be seen, the UP has moved the physical pole to the real momentum axis.
This change of the pole position should be within the bounds of the LO model. Moreover, note that the
low-momentum physics of the UP propagator is unchanged up to order k2.

The second method is the subtraction prescription (SP), where the unphysical pole is simply subtracted
from the dicluster propagator. The SP propagator is given by

D(SP)(E,p) = 15π

2mg2
1

[
1

1
a1

− 1
2r1k2 + ik3

− R0

k − k0

]
, (14)

where k0 and R0 are the pole position and residue of the unphysical pole. There are two things to note about
the SP: First, the prescription does not move the physical pole and, second, it changes the low-momentum
physics. This second point means that the scattering length and effective range of the SP propagator (14) are
not the same as before the subtraction. The impact of the subtraction depends on how deep the spurious bound
state is, but corrections can typically be considered to be of higher order. For example, setting k = 0 in Eq. (14)
gives a correction to the scattering length that is proportional to ∼1/(ka1) if we assume that the residue R0 is
of order 1. Generally we expect corrections to ERE parameters of order

√
E/Edeep.

The third prescription we call the expansion prescription (EP). In the EP we expand the unphysical pole
to second order in momentum and therefore it does neither change the low-momentum physics, nor move the
physical pole position. The EP propagator is given by
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D(EP)(E,p) = 15π

2mg2
1

1
1
a1

− 1
2r1k2 + ik3

− R0

(
1

k − k0
+ 1

k0
+ k

k2
0

+ k2

k3
0

)
. (15)

As can be seen in Eq. (15) this propagator has very different large-momentum asymptotics than the original
dicluster propagator, since it now scales as k2 for large k. From an EFT perspective this is not an issue, since
the large-momentum asymptotics is renormalized. However, numerically we are limited to lower cutoffs in
the EP, than in the UP or SP, since the three-body amplitudes will consist of differences of very large numbers
when the cutoff is large.

2.3 Three-Body Scattering Diagrams

In this part we write down the three-body integral equations for the 0+ channel of 6He. We define the integral
equations to have outgoing 5He(3/2−) and neutron legs. Since we have three two-body channels the integral
equation is a coupled system with three parts: (i) The A-amplitude, with incoming 5He(3/2−) and neutron legs,
(ii) the B-amplitude, with incoming 5He(1/2−) and neutron legs, and (iii) the C-amplitude, with incoming
dineutron and α-particle legs. Note that in order to have a total 0+ the 5He+neutron legs must be in a relative
P-wave, while the dineutron+α legs must be in a relative S-wave. The three-body integral equations are shown
in a diagrammatic form in Fig. 2.

On the first line for each of the amplitudes in Fig. 2 the two inhomogeneous terms are shown. However, in
this paper we are only concerned with bound-state solutions for which the scattering amplitude has a pole for
negative energies. As such the inhomogeneous terms are not necessary for our purpose. We have constructed
the integral equations from the diagrams in Fig. 2. The homogeneous part of the integral equations projected
onto a total 0+ is given by

i A(A)(k, p) = ig2
1

2m

3π2

∫
dqq2K (AA)(k, q)D

(
E − 3q2

5m
, 0

)
A(q, p) (16)

i A(B)(k, p) = ig1g̃1
2m

3π2

∫
dqq2K (AB)(k, q)D̃

(
E − 3q2

5m
, 0

)
B(q, p) (17)

i A(C)(k, p) = ig1g0
m√
6π2

∫
dqq2K (AC)(k, q)B

(
E − 3q2

8m
, 0

)
C(q, p) (18)

i B(A)(k, p) = ig1g̃1
2m

3π2

∫
dqq2K (BA)(k, q)D

(
E − 3q2

5m
, 0

)
A(q, p) (19)

i B(B)(k, p) = i g̃2
1

2m

3π2

∫
dqq2K (BB)(k, q)D̃

(
E − 3q2

5m
, 0

)
B(q, p) (20)

i B(C)(k, p) = i g̃1g0
m√
6π2

∫
dqq2K (BC)(k, q)B

(
E − 3q2

8m
, 0

)
C(q, p) (21)

iC (A)(k, p) = 2ig0g1
m√
6π2

∫
dqq2K (CA)(k, q)D

(
E − 3q2

5m
, 0

)
A(q, p) (22)

iC (B)(k, p) = 2ig0g̃1
m√
6π2

∫
dqq2K (CB)(k, q)D̃

(
E − 3q2

5m
, 0

)
B(q, p) (23)

iC (C)(k, p) = 2ig2
0

m

2π2

∫
dqq2K (CC)(k, q)B

(
E − 3q2

8m

)
C(q, p). (24)

The momenta are defined such that the incoming fields have relative momentum k and the outgoing fields
have relative momentum p. The loop-momentum q is limited by the cutoff Λ and the integration span [0, Λ]
is replaced with a Legendre mesh when the integral equations are solved numerically.
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C

Fig. 2 The three-body scattering diagrams. Since there are three two-body channels the scattering equation is given by a coupled
integral equation of three parts. See text for details.

The kernels K XY , where X, Y = A, B,C , are defined as

K (AA)(k, p) = 27

25
Q0(ρ1(k, p)) + 2

5

k2 + p2

kp
Q1(ρ1(k, p)) + Q2(ρ1(k, p))

− H1
kp

Λ2 (25)

K (AB)(k, p) = K (BA)(k, p)

=
√

2

25
Q0(ρ1(k, p)) +

√
2

5

k2 + p2

kp
Q1(ρ1(k, p)) + √

2Q2(ρ1(k, p))

− H2
kp

Λ2 (26)

K (AC)(k, p) =K (CA)(p, k)

= 4

5p
Q0(ρ2(k, p)) + 1

k
Q1(ρ2(k, p)) − H5

k

Λ2 (27)
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K (BB)(k, p) = 26

25
Q0(ρ1(k, p)) + 1

5

k2 + q2

kq
Q1(ρ1(k, q)) − H3

kp

Λ2 (28)

K (BC)(k, p) = K (CB)(p, k)

= 4

5
√

2p
Q0(ρ2(k, p)) + 1√

2k
Q1(ρ2(k, p)) − H6

k

Λ2 (29)

K (CC)(k, p) = −H4
1

Λ2 , (30)

where the arguments to the Legendre-Q functions QL are given by

ρ1(k, p) = 4mE

kp
− 5k

2p
− 5p

2k
(31)

ρ2(k, p) = mE

kp
− k

p
− 5p

8k
. (32)

For convenience we have introduced new three-body parameters and these are given in terms of the old ones
as

H1 = h1

4mg2
1

Λ2 (33)

H2 = h2

4mg1g̃1
Λ2 (34)

H3 = h3

4mg̃2
1

Λ2 (35)

H4 = h4

mg2
0

Λ2 (36)

H5 = h5√
2mg0g1

Λ2 (37)

H6 = h6

mg0 g̃1
Λ2. (38)

Note that the H1, H3 and H4 are what we refer to as the diagonal three-body interactions, while H2, H5 and
H6 are the off-diagonal ones.

3 Renormalization of Bound States

In this section we present results for the renormalization of the 6He(0+) bound state, using the six three-
body interactions at the lowest scaling dimension and the three different prescriptions for how to handle the
unphysical two-body poles.

In searching for the bound state we search for negative-energy solutions to the eigenvalue matrix equation
V=KV, where V is the vector of amplitudes and K is the kernel matrix. The kernel matrix is constructed by
numerically replacing the momenta by Legendre meshes over [0, Λ]. The solution is obtained by finding the
zero of the kernel determinant, that is

det (1 − K ) = 0. (39)

3.1 Field Theory with Dineutron and 5He(3/2−) Channels

We begin by using the simpler field theory, where only the dineutron and the 5He(3/2−) channels are included.
First, we set all the three-body interactions for this field theory, H1, H4 and H5, to zero and evaluate the integral
equations for different cutoffs. We performed these calculations using all three prescriptions (UP, SP, and EP)
for the handling of the unphysical two-body poles. From this we obtain the cutoff dependence of the bound-
state energy. The result of this numerical study is presented in Fig. 3. As can be seen, the bound-state energy
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Fig. 3 The 6He binding energy (B = −E) as a function of the cutoff Λ. Only the dineutron and the 5He(3/2−) channels are
included. All the three-body interactions have been set to zero

is cutoff dependent and this implies that (at least) one three-body interaction is needed to renormalize the field
theory.

We then move on to solving the integral equations for a fixed binding energy, E = −1 MeV, and one
varying three-body interaction. Thus, for each value of the cutoff we find the value of a selected three-body
parameter that gives the fixed binding energy. For the off-diagonal three-body interaction, H5, we did not find
any solutions to the integral equation. This indicates that it can not renormalize the field theory. Using the
diagonal interactions, H1 and H4, we generated the results, shown in Fig. 4. As before, we performed these
calculations for all three unphysical-pole-removal prescriptions. It is seen that the renormalization shows a
limit-cycle like behavior for both the H1 and H4 three-body interactions. The poles that can be seen in Fig. 4 are
associated with the appearance of additional three-body bound states. The different pole removal prescriptions
differ in the amount of states that are generated at larger energies since the different pole removal prescriptions
lead to different large momentum behaviors in the two-body amplitude.

Finally, we also use the dineutron and 5He(3/2−) field theory to search for deep bound states in the 0+
channel. Of course, these states are not true states of 6He, but they are still well-defined observables in the
field theory. As such, if these deep bound states do not converge with increasing cutoff, then that indicates
that the field theory is not properly renormalized. The procedure is as follows: First we fix either the H1 or H4

Fig. 4 The running of the three-body forces H1 (left panels) and H4 (right panels) for the three different pole removal prescriptions.
Only the dineutron and the 5He(3/2−) channels are included. The three-body parameter was fixed to reproduce the bound-state
energy E = −1 MeV
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Fig. 5 Convergence of deep bound states for the three different prescriptions, using either the H1 or H4 three-body interaction.
Only the dineutron and the 5He(3/2−) channels are included. The three-body parameter was fixed to reproduce the bound-state
energy E = −1 MeV

three-body interaction to reproduce the bound-state energy E = −1 MeV for a fixed value of the cutoff. Then,
we use this three-body interaction to search for additional solutions to Eq. (39) for larger binding energies.
These solutions are then deep bound states of the system. Third, we repeat the process for larger values of the
cutoff. The result is then a convergence plot of these deep bound states and it is given in Fig. 5. Five findings
are of particular note regarding the convergence of these deep-bound states: (i) The deep-bound states do
indeed converge for large cutoffs, (ii) the convergence using the H1 three-body interaction is much faster than
using the H4 one, (iii) the two different three-body interactions renormalize the deep bound states to the same
binding energy, (iv) the three different prescriptions produce a different bound-state spectrum, and (v) using
the EP we are numerically limited to cutoffs Λ � 105 MeV and for these cutoffs the deep bound states have
not yet converged when the H4 interaction is used. Summarizing this part, it is very encouraging that the H1
and H4 interactions give the same spectrum and since the H1 produces faster convergence this motivates the
use of only this three-body interaction. This conclusion is in line with previous work on the 6He(0+), where
only this three-body interaction was considered, see Refs. [19,20].

3.2 Field Theory with Dineutron, 5He(3/2−) and 5He(1/2−) Channels

We now include also the 5He(1/2−) channel into the field theory. As such we have three channels to consider,
which increases the computational cost by about a factor of two compared to the two-channel system. Further,
there are now in total six three-body interactions at the lowest scaling dimension. However, in solving the
integral equations for a bound state—using one three-body interaction term at a time—we did not find any
solutions for the off-diagonal ones: H2, H5, and H6.

When a search for deep bound states was performed, using one of the diagonal three-body interactions H1,
H3 and H4 at a time, no clear convergence was observed. The cutoff dependence of the deep-bound states,
using the SP and the H3 three-body interaction, can be seen in Fig. 6. It is clear that these deep bound states
are much more shallow than in the field theory without the 5He(1/2−) and we are limited to a lower cutoff,
Λ � 106 MeV. This indicates that the integral equation for the field theory with the 5He(1/2−) included
is more involved numerically. The result implies that one three-body interaction is not sufficient for proper
renormalization of the field theory. As such one would need to fix two, or more, three-body interactions
simultaneously. However, it could also be the case that the deep bound states are renormalized at a larger cutoff
than is presently accessible to us.
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Fig. 6 Non-convergence of deep bound states for a field theory where the 1/2− channel is also included. Only the H3 three-body
interaction is used. The three-body parameter was fixed to the bound state energy B = 1 MeV. The vertical blue lines indicate
singularities in the limit cycle and it can be seen that the oscillation of the deep bound states are given by the period of these
singularities

4 Conclusion

In this paper we have derived the LO integral equations for the treatment of the 0+ channel of 6He from
quantum field theory. We included not only the dineutron and 5He(3/2−) channels, but also the 5He(1/2−).
We analyzed all six three-body interactions that appear at the lowest mass dimension. Further, we discussed
three different prescriptions of how to handle the unphysical pole in the P-wave 5He dicluster propagators. We
showed that all three methods are useful but that they lead to different convergence behavior when employed
in the few-body sector.

For a field theory where only the dineutron and the 5He(3/2−) channels were included we showed that the
system was properly renormalized. In addition, both the H1 and H4 three-body interactions generated the same
bound state spectrum. However, for a field theory where the 5He(1/2−) was also included the system was not
renormalizable, at least not when only one three-body interaction was used and for cutoffs Λ � 106 MeV.

Future studies will concern the resonant spectrum and additional total angular momentum channels, for
example the 6He(2+). Our results are also relevant for future applications of Halo EFT to D-wave systems such
as low-lying resonances in the Oxygen-25 and Oxygen-26 nuclei. In these systems, Oxygen-24 is interacting
strongly in a relative D-wave with the neutrons. Furthermore, additional spurious poles are expected in the two-
body sector due to the polynomial structure of the effective range expansion that appears after renormalization
in the denominator of two-body propagators.
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