67 research outputs found

    On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia

    Get PDF
    We construct a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the class of 4231-avoiding permutations is bounded below by 9.35. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley limit of a class of permutations avoiding a single permutation of length k cannot exceed (k-1)^2.Comment: Submitted to Advances in Applied Mathematic

    Search for new synthetic immunosuppressants II. Tetrazole analogues of hymenistatin I

    Get PDF
    Linear and cyclic hymenistatin I (HS I) analogues with dipeptide segments Ile2-Pro3, Pro3-Pro4 and Val6-Pro7 replaced by their tetrazole analogues Ile-Ψ[CN4]-Ala3, Pro3-Ψ[CN4]-Ala4 and Val6-Ψ[CN4]-Alawere synthesized by the solid phase peptide synthesis method and cyclized with the TBTU and/or HATU reagent. The peptides were examined for their immunosuppressive activity in the lymphocyte proliferation test (LPT)

    A global review on short peptides: frontiers and perspectives

    Get PDF
    Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed

    Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner

    Get PDF
    © 2010 Büttner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Parkinson’s disease is characterized by the presence of cytoplasmic inclusions, known as Lewy bodies, containing both aggregated α-synuclein and its interaction partner, synphilin-1. While synphilin-1 is known to accelerate inclusion formation by α-synuclein in mammalian cells, its effect on cytotoxicity remains elusive. Methodology/Principal Findings: We expressed wild-type synphilin-1 or its R621C mutant either alone or in combination with α-synuclein in the yeast Saccharomyces cerevisiae and monitored the intracellular localization and inclusion formation of the proteins as well as the repercussions on growth, oxidative stress and cell death. We found that wild-type and mutant synphilin-1 formed inclusions and accelerated inclusion formation by α-synuclein in yeast cells, the latter being correlated to enhanced phosphorylation of serine-129. Synphilin-1 inclusions co-localized with lipid droplets and endomembranes. Consistently, we found that wild-type and mutant synphilin-1 interacts with detergent-resistant membrane domains, known as lipid rafts. The expression of synphilin-1 did not incite a marked growth defect in exponential cultures, which is likely due to the formation of aggresomes and the retrograde transport of inclusions from the daughter cells back to the mother cells. However, when the cultures approached stationary phase and during subsequent ageing of the yeast cells, both wild-type and mutant synphilin-1 reduced survival and triggered apoptotic and necrotic cell death, albeit to a different extent. Most interestingly, synphilin-1 did not trigger cytotoxicity in ageing cells lacking the sirtuin Sir2. This indicates that the expression of synphilin-1 in wild-type cells causes the deregulation of Sir2-dependent processes, such as the maintenance of the autophagic flux in response to nutrient starvation. Conclusions/Significance: Our findings demonstrate that wild-type and mutant synphilin-1 are lipid raft interacting proteins that form inclusions and accelerate inclusion formation of α-synuclein when expressed in yeast. Synphilin-1 thereby induces cytotoxicity, an effect most pronounced for the wild-type protein and mediated via Sir2-dependent processes.This work was supported by grants from IWT-Vlaanderen (SBO NEURO-TARGET), the K.U.Leuven Research Fund (K.U.Leuven BOF-IOF) and K.U.Leuven R&D to JW, a Tournesol grant from Egide (Partenariat Hubert Curien) in France in collaboration with the Flemish Ministry of Education and the Fund of Scientific Research of Flanders (FWO) in Belgium to JW, MCG and LB, a shared PhD fellowship of the EU-Marie Curie PhD Graduate School NEURAD to JW, MCG and LB, grants of the Austrian Science Fund FWF (Austria) to FM and DR (S-9304-B05), to FM and SB (LIPOTOX), and to SB (T-414-B09; Hertha-Firnberg Fellowship) and an EMBO Installation Grant, a Marie Curie IRG, and a grant of the Fundação para a Ciência e Tecnologia (PTDC/SAU-NEU/105215/2008) to TFO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Modulation of Aβ(42 )low-n oligomerization using a novel yeast reporter system

    Get PDF
    BACKGROUND: While traditional models of Alzheimer's disease focused on large fibrillar deposits of the Aβ(42 )amyloid peptide in the brain, recent work suggests that the major pathogenic effects may be attributed to SDS-stable oligomers of Aβ(42). These Aβ(42 )oligomers represent a rational target for therapeutic intervention, yet factors governing their assembly are poorly understood. RESULTS: We describe a new yeast model system focused on the initial stages of Aβ(42 )oligomerization. We show that the activity of a fusion of Aβ(42 )to a reporter protein is compromised in yeast by the formation of SDS-stable low-n oligomers. These oligomers are reminiscent of the low-n oligomers formed by the Aβ(42 )peptide in vitro, in mammalian cell culture, and in the human brain. Point mutations previously shown to inhibit Aβ(42 )aggregation in vitro, were made in the Aβ(42 )portion of the fusion protein. These mutations both inhibited oligomerization and restored activity to the fusion protein. Using this model system, we found that oligomerization of the fusion protein is stimulated by millimolar concentrations of the yeast prion curing agent guanidine. Surprisingly, deletion of the chaperone Hsp104 (a known target for guanidine) inhibited oligomerization of the fusion protein. Furthermore, we demonstrate that Hsp104 interacts with the Aβ(42)-fusion protein and appears to protect it from disaggregation and degradation. CONCLUSION: Previous models of Alzheimer's disease focused on unravelling compounds that inhibit fibrillization of Aβ(42), i.e. the last step of Aβ(42 )assembly. However, inhibition of fibrillization may lead to the accumulation of toxic oligomers of Aβ(42). The model described here can be used to search for and test proteinacious or chemical compounds for their ability to interfere with the initial steps of Aβ(42 )oligomerization. Our findings suggest that yeast contain guanidine-sensitive factor(s) that reduce the amount of low-n oligomers of Aβ(42). As many yeast proteins have human homologs, identification of these factors may help to uncover homologous proteins that affect Aβ(42 )oligomerization in mammals

    Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method

    Get PDF
    Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn1–140) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn1–139 and Ac-α-syn1–103) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)

    Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    Get PDF
    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation

    Development of a thermoelectric module suitable for vehicles and based on CoSb3 manufactured close to production

    Get PDF
    Despite the ongoing electrification of vehicle propulsion systems, vehicles with combustion engines will continue to bear the brunt of passenger services world-wide for the next few decades. As a result, the DLR Institute of Vehicle Concepts, the Institute of Materials Research and the Institute of Technical Thermodynamics have focused on utilising the exhaust heat of internal combustion engines by means of thermoelectric generators (TEGs). Their primary goal is the development of cost-efficient TEGs with long-term stability and maximised energy yield. In addition to the overall TEG system design, the development of long-term stable, efficient thermoelectric modules (TEMs) for high-temperature applications is a great challenge. This paper presents the results of internal development work and reveals an expedient module design for use in TEGs suitable for vehicles. The TEM requirements identified, which were obtained by means of experiments on the test vehicle and test bench, are described first. Doped semiconductor materials were produced and characterised by production methods capable of being scaled up in order to represent series application. The results in terms of thermoelectric properties (Seebeck coefficient, electrical conductivity and thermal conductivity) were used for the simulative design of a thermoelectric module using a constant-property model and with the aid of FEM calculations. Thermomechanical calculations of material stability were carried out in addition to the TEM's thermodynamic and thermoelectric design. The film sequence within the module represented a special challenge. Multilayer films facilitated adaptation of the thermal and mechanical properties of plasma-sprayed films. A joint which dispenses with solder additives was also possible using multilayer films. The research resulted in a functionally-optimised module design, which was enhanced for use in motor vehicles using process flexibility and close-to-production manufacturing methods
    corecore