590 research outputs found

    Itinerant Ferromagnetism in an Atom Trap

    Get PDF
    We propose an experiment to explore the magnetic phase transitions in interacting fermionic Hubbard systems, and describe how to obtain the ferromagnetic phase diagram of itinerant electron systems from these observations. In addition signatures of ferromagnetic correlations in the observed ground states are found: for large trap radii (trap radius RT>4R_T > 4, in units of coherence length ξ\xi), ground states are topological in nature -- a "skyrmion" in 2D, and a "hedgehog" in 3D.Comment: Final Published version. References adde

    Where the Rocks Bleed Ink: Images of Self in Palestinian Political Cartoons

    Get PDF
    This graphic novel looks at symbols used by three prominent Palestinian political cartoonists—Naji al Ali, Baha Boukhari, and Khalil Abu Arafeh—that represent the Palestinian people. The goal, assuming that political cartoons accurately reflect the opinions of the common people, is to discern what Palestinians think about themselves. This study finds that while the cartoonists use a number of cultural and religious symbols to represent Palestinians, the most regularly used images—and hypothetically the most insightful—are representations of common Palestinian people themselves. They are depicted as humble yet strong and pious. Al Ali’s cartoons are taken from handala.org, a website dedicated to al Ali, his most famous character Handala, and to the Palestinian cause. Boukhari’s and Abu Arafeh’s cartoons come from their personal Facebook pages

    Even Parity, Orbital Singlet and Spin Triplet Pairing for Superconducting La(O1−xFx)FeAsLa(O_{1-x}F_x)FeAs

    Full text link
    In the present paper, we propose the parity even,orbital singlet and spin triplet pairing state as the ground state of the newly discovered super-conductor LaO1−xFxFeAsLaO_{1-x}F_xFeAs.The pairing mechanism involves both the special shape of the electron fermi surface and the strong ferromagnetic fluctuation induced by Hund's rule coupling.The special behavior of the Bogoliubov quasi-particle spectrum may leads to "Fermi arc" like anisotropy super-conducting gap, which can be detected by angle resolved photo emission(ARPES).The impurity effects are also discussed.Comment: 4 pages, 3 figure

    Variationnal study of ferromagnetism in the t1-t2 Hubbard chain

    Full text link
    A one-dimensional Hubbard model with nearest and (negative) next-nearest neighbour hopping is studied variationally. This allows to exclude saturated ferromagnetism for U<UcU < U_c. The variational boundary Uc(n)U_c (n) has a minimum at a ``critical density'' ncn_c and diverges for n→1n \rightarrow 1.Comment: 5 pages, LateX and 1 postscript figure. To appear in Physica

    Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry

    Full text link
    We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain complicated behaviour of the 2-nd order intensity correlation function we developed advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in most experiments several beams were present in radiating field and in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table

    Exact single spin flip for the Hubbard model in d=∞d=\infty

    Full text link
    It is shown that the dynamics of a single ↓\downarrow-electron interacting with a band of ↑\uparrow-electrons can be calculated exactly in the limit of infinite dimension. The corresponding Green function is determined as a continued fraction. It is used to investigate the stability of saturated ferromagnetism and the nature of the ground state for two generic non-bipartite infinite dimensional lattices. Non Fermi liquid behavior is found. For certain dopings the ↓\downarrow-electron is bound to the ↑\uparrow-holes.Comment: 4 pages, 3 figures included with psfig, Revtex; Phys. Rev. Lett. in press; some amendments made to clarify the calculation of the self-energy, the extrapolation of the continued fraction, and the statements on Fermi-liquid theor

    Hanbury Brown and Twiss interferometry at a free-electron laser

    Full text link
    We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources.Comment: 19 pages, 6 figures, 1 table, 40 reference

    Seeded x-ray free-electron laser generating radiation with laser statistical properties

    Full text link
    The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. Most existing FELs are highly spatially coherent but in spite of their name, they behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The first steps have been taken towards exploiting the first-order coherence of FELs, and the present work opens the way to quantum optics experiments that strongly rely on high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference
    • …
    corecore