9,482 research outputs found

    Non-additivity of quantum capacity for multiparty communication channels

    Full text link
    We investigate multiparty communication scenarios where information is sent from several sender to several receivers. We establish a relation between the quantum capacity of multiparty communication channels and their distillability properties which enables us to show that the quantum capacity of such channels is not additive.Comment: 4 pages, 1 figur

    Improving Detectors Using Entangling Quantum Copiers

    Get PDF
    We present a detection scheme which using imperfect detectors, and imperfect quantum copying machines (which entangle the copies), allows one to extract more information from an incoming signal, than with the imperfect detectors alone.Comment: 4 pages, 2 figures, REVTeX, to be published in Phys. Rev.

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape

    Quantum Capacity Approaching Codes for the Detected-Jump Channel

    Full text link
    The quantum channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit-flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel

    Improving Patient Decision-Making in Health Care

    Get PDF
    Outlines regional variations within Minnesota in rates of patients with similar conditions receiving elective surgery, the concept of shared decision making, treatment choices for eight conditions, and steps for ensuring patients make informed decisions

    Detecting the harmonics of oscillations with time-variable frequencies

    Get PDF
    A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology

    Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming

    Full text link
    We have formulated the problem of generating periodic dense paritcle packings as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in dd-dimensional Euclidean space Rd\mathbb{R}^d, it is most suitable and natural to solve the corresponding ASC optimization problem using sequential linear programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd\mathbb{R}^d for d=2,3,4,5d=2,3,4,5 and 66 with a diversity of disorder and densities up to the maximally densities. This deterministic algorithm can produce a broad range of inherent structures besides the usual disordered ones with very small computational cost by tuning the radius of the {\it influence sphere}. In three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6,0.7408...][0.6, 0.7408...]. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2,3,4,5d=2,3, 4,5 and 6. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably more robust and computationally faster at generating maximally dense packings, especially as the space dimension increases.Comment: 34 pages, 6 figure

    Group entropies, correlation laws and zeta functions

    Full text link
    The notion of group entropy is proposed. It enables to unify and generalize many different definitions of entropy known in the literature, as those of Boltzmann-Gibbs, Tsallis, Abe and Kaniadakis. Other new entropic functionals are presented, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium, when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.Comment: to appear in Physical Review
    corecore