1,662,666 research outputs found

    Charge carrier correlation in the electron-doped t-J model

    Full text link
    We study the t-t'-t''-J model with parameters chosen to model an electron-doped high temperature superconductor. The model with one, two and four charge carriers is solved on a 32-site lattice using exact diagonalization. Our results demonstrate that at doping levels up to x=0.125 the model possesses robust antiferromagnetic correlation. When doped with one charge carrier, the ground state has momenta (\pm\pi,0) and (0,\pm\pi). On further doping, charge carriers are unbound and the momentum distribution function can be constructed from that of the single-carrier ground state. The Fermi surface resembles that of small pockets at single charge carrier ground state momenta, which is the expected result in a lightly doped antiferromagnet. This feature persists upon doping up to the largest doping level we achieved. We therefore do not observe the Fermi surface changing shape at doping levels up to 0.125

    Hole correlation and antiferromagnetic order in the t-J model

    Full text link
    We study the t-J model with four holes on a 32-site square lattice using exact diagonalization. This system corresponds to doping level x=1/8. At the ``realistic'' parameter J/t=0.3, holes in the ground state of this system are unbound. They have short range repulsion due to lowering of kinetic energy. There is no antiferromagnetic spin order and the electron momentum distribution function resembles hole pockets. Furthermore, we show evidence that in case antiferromagnetic order exists, holes form d-wave bound pairs and there is mutual repulsion among hole pairs. This presumably will occur at low doping level. This scenario is compatible with a checkerboard-type charge density state proposed to explain the ``1/8 anomaly'' in the LSCO family, except that it is the ground state only when the system possesses strong antiferromagnetic order

    Physics of the Pseudogap State: Spin-Charge Locking

    Full text link
    The properties of the pseudogap phase above Tc of the high-Tc cuprate superconductors are described by showing that the Anderson-Nambu SU(2) spinors of an RVB spin gap 'lock' to those of the electron charge system because of the resulting improvement of kinetic energy. This enormously extends the range of the vortex liquid state in these materials. As a result it is not clear that the spinons are ever truly deconfined. A heuristic description of the electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter

    Technical Skills for Students of Architecture

    Get PDF
    Architects employ science in order to understand the structural and environmental performance of their products, and apply technology in order to assemble them. And although the role of the architect has changed/evolved even within recent history, the relationship between engineering science, construction technology and the design of the built environment has been at the core of architectural practice throughout history. 2000 years ago, Marcus Vitruvius Pollio (80-15 BC) commenced The Ten Books on Architecture with a chapter on “The Education of The Architect”, where he states: “The architect should be equipped with knowledge of many branches of study and varied kinds of learning, for it is by this judgement that all work done by the other arts is put to the test”. Vitruvius proceeds to explain and differentiate between practice and theory with the need for an architect to have “a thorough knowledge of both”.1 This paper describes the pedagogic approach of the Technical Studies department at the University of Westminster to the architecture course for degree (B.A.) students. It demonstrates the product of this approach in the form of a small sample of student work over a period of roughly ten years

    Beam squint correction for a diplex, retrodirective phased array

    Get PDF
    Beam squint is eliminated by using received phase at each array element to control transmitted phase at another element. Correction method may extend to multi-element array by using ring structure

    Bose Fluids Above Tc: Incompressible Vortex Fluids and "Supersolidity"

    Full text link
    This paper emphasizes that non-linear rotational or diamagnetic susceptibility is characteristic of Bose fluids above their superfluid Tcs, and for sufficiently slow rotation or weak B-fields amounts to an incompressible response to vorticity. The cause is a missing term in the conventionally accepted model Hamiltonian for quantized vortices in the Bose fluid. The resulting susceptibility can account for recent observations of Chan et al on solid He, and Ong et al on cuprate superconductors

    Epitaxial Thin Films of the Giant-Dielectric-Constant Material CaCu_3Ti_4O_{12} Grown by Pulsed-laser Deposition

    Full text link
    Pulsed-laser deposition has been used to grow epitaxial thin films of the giant-dielectric-constant material CaCu_3Ti_4O_{12} on LaAlO_3 and SrTiO_3 substrates with or without various conducting buffer layers. The latter include YBa_2Cu_3O_7, La_{1.85}Sr_{0.15}CuO_{4+\delta} and LaNiO_3. Above 100K - 150K the thin films have a temperature independent dielectric constant as do single crystals. The value of the dielectric constant is of the order of 1500 over a wide temperature region, potentially making it a good candidate for many applications. The frequency dependence of its dielectric properties below 100K - 150K indicates an activated relaxation process.Comment: 11 pages, 4 figure
    • …
    corecore