We study the t-t'-t''-J model with parameters chosen to model an
electron-doped high temperature superconductor. The model with one, two and
four charge carriers is solved on a 32-site lattice using exact
diagonalization. Our results demonstrate that at doping levels up to x=0.125
the model possesses robust antiferromagnetic correlation. When doped with one
charge carrier, the ground state has momenta (\pm\pi,0) and (0,\pm\pi). On
further doping, charge carriers are unbound and the momentum distribution
function can be constructed from that of the single-carrier ground state. The
Fermi surface resembles that of small pockets at single charge carrier ground
state momenta, which is the expected result in a lightly doped antiferromagnet.
This feature persists upon doping up to the largest doping level we achieved.
We therefore do not observe the Fermi surface changing shape at doping levels
up to 0.125