7,514 research outputs found

    Specialization of the rostral prefrontal cortex for distinct analogy processes

    Get PDF
    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions

    The Orbits of Meteorites from Natural Thermoluminescence

    Get PDF
    The natural thermoluminescence (TL) of meteorites reflects their irradiation and thermal histories. Virtually all ordinary chondrites have been irradiated long enough to reach saturation natural TL levels, and thus natural TL levels in these meteorites are determined largely by thermal history. The primary heat source for most meteorites is the Sun, and thus natural TL levels are determined primarily by the closest approach to the Sun, i.e., perihelion. By converting natural TL levels to perihelia, using an assumed albedo typical of meteoroid bodies, it is found that most ordinary chondrites had perihelia of 0.85 to 1.0 AU prior to reaching Earth. This range is similar to that calculated from meteor and fireball observations. All common classes of ordinary chondrites exhibit similar perihelia distributions; however, H and LL chondrites that fell in the local morning differ in their natural TL distribution from those that fell in the local afternoon or evening. This is consistent with earlier suggestions that time of fall reflects orbital distribution. The data also suggest that the orbits of some of the H chondrites cluster and may have come from a debris 'stream' of meteoroids. If meteorites can exist in "orbital groups," significant changes in the types and number of meteorites reaching Earth could occur on the less than 10(exp 5)-year time scale

    The Cooling History and Structure of the Ordinary Chondrite Parent Bodies

    Get PDF
    Most major meteorite classes exhibit significant ranges of metamorphism. The effects of metamorphism have been extensively characterized, but the heat source(s) and the metamorphic environment are unknown. Proposed beat sources include Al-26, Fe-60, electromagnetic induction, and impact. It is typically assumed that metamorphism occurred in parent bodies of some sort, but it uncertain whether these bodies were highly structured ("onion skins") or were chaotic mixes of material ("rubble piles"). The lack of simple trends of metallographic cooling rates with petrologic type has been considered supportive of both concepts. In this study, we use induced thermoluminescence (TL) as an indicator of thermal history. The TL of ordinary chondrites is produced by sodic feldspar, and the induced TL peak temperature is related to its crystallographic order/disorder. Ordered feldspar has TL peak temperatures of approx. 120 C, and disordered feldspar has TL peak temperatures of approx. 220 C. While ordered feldspar can be easily disordered in the laboratory by heating above 650 C and is easily quenched in the disordered form, producing ordered feldspar requires cooling at geologic cooling rates. We have measured the induced TL properties of 101 equilibrated ordinary chondrites, including 49 H, 29 L, and 23 LL chondrites. For the H chondrites there is an apparent trend of decreasing induced TL peak temperature with increasing petrologic type. H4 chondrites exhibit a tight range of TL peak temperatures, 190 C - 200 C, while H6 chondrites exhibit TL peak temperatures between 180 C and 190 C. H5 chondrites cover the range between H4 and H6, and also extend up to 210 C. Similar results are obtained for LL chondfiles and most L6 chondrites have lower induced TL peak temperatures than L5 chondrites

    Spherical Vesicles Distorted by a Grafted Latex Bead: An Exact Solution

    Full text link
    We present an exact solution to the problem of the global shape description of a spherical vesicle distorted by a grafted latex bead. This solution is derived by treating the nonlinearity in bending elasticity through the (topological) Bogomol'nyi decomposition technique and elastic compatibility. We recover the ``hat-model'' approximation in the limit of a small latex bead and find that the region antipodal to the grafted latex bead flattens. We also derive the appropriate shape equation using the variational principle and relevant constraints.Comment: 12 pages, 2 figures, LaTeX2e+REVTeX+AmSLaTe

    A double-layer Boussinesq-type model for highly nonlinear and dispersive waves

    Get PDF
    28 pages, 5 figures. Soumis à Proceedings of the Royal Society of London A.We derive and analyze in the framework of the mild-slope approximation a new double-layer Boussinesq-type model which is linearly and nonlinearly accurate up to deep water. Assuming the flow to be irrotational, we formulate the problem in terms of the velocity potential thereby lowering the number of unknowns. The model derivation combines two approaches, namely the method proposed by Agnon et al. (Agnon et al. 1999, J. Fluid Mech., 399 pp. 319-333) and enhanced by Madsen et al. (Madsen et al. 2003, Proc. R. Soc. Lond. A, 459 pp. 1075-1104) which consists in constructing infinite-series Taylor solutions to the Laplace equation, to truncate them at a finite order and to use Padé approximants, and the double-layer approach of Lynett & Liu (Lynett & Liu 2004, Proc. R. Soc. Lond. A, 460 pp. 2637-2669) allowing to lower the order of derivatives. We formulate the model in terms of a static Dirichlet-Neumann operator translated from the free surface to the still-water level, and we derive an approximate inverse of this operator that can be built once and for all. The final model consists of only four equations both in one and two horizontal dimensions, and includes only second-order derivatives, which is a major improvement in comparison with so-called high-order Boussinesq models. A linear analysis of the model is performed and its properties are optimized using a free parameter determining the position of the interface between the two layers. Excellent dispersion and shoaling properties are obtained, allowing the model to be applied up to deep water. Finally, numerical simulations are performed to quantify the nonlinear behaviour of the model, and the results exhibit a nonlinear range of validity reaching deep water areas

    The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules

    Get PDF
    Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and B) which differ in their bulk compositions, phase compositions, and CL properties. The group A chondrules in both meteorites show evidence for major loss of material by evaporation(i.e. elemental abundance patterns, size, redox state, olivine-pyroxene abundances). Group A and B chondrules probably formed from common or very similar precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect on its chondrules

    Incommensurate magnetic structure of CeRhIn5

    Full text link
    The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is determined using neutron diffraction. We find a magnetic wave vector q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion, spirals transversely along the c axis. The nearest neighbor moments on the tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This affects the value of staggered moment. The correct staggered moment is 0.374(5) Bohr magneton at 1.4

    Axially symmetric membranes with polar tethers

    Full text link
    Axially symmetric equilibrium configurations of the conformally invariant Willmore energy are shown to satisfy an equation that is two orders lower in derivatives of the embedding functions than the equilibrium shape equation, not one as would be expected on the basis of axial symmetry. Modulo a translation along the axis, this equation involves a single free parameter c.If c\ne 0, a geometry with spherical topology will possess curvature singularities at its poles. The physical origin of the singularity is identified by examining the Noether charge associated with the translational invariance of the energy; it is consistent with an external axial force acting at the poles. A one-parameter family of exact solutions displaying a discocyte to stomatocyte transition is described.Comment: 13 pages, extended and revised version of Non-local sine-Gordon equation for the shape of axi-symmetric membrane

    The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    Get PDF
    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite
    corecore