We present an exact solution to the problem of the global shape description
of a spherical vesicle distorted by a grafted latex bead. This solution is
derived by treating the nonlinearity in bending elasticity through the
(topological) Bogomol'nyi decomposition technique and elastic compatibility. We
recover the ``hat-model'' approximation in the limit of a small latex bead and
find that the region antipodal to the grafted latex bead flattens. We also
derive the appropriate shape equation using the variational principle and
relevant constraints.Comment: 12 pages, 2 figures, LaTeX2e+REVTeX+AmSLaTe