2,991 research outputs found
Grating-coupled excitation of multiple surface plasmon-polariton waves
The excitation of multiple surface-plasmon-polariton (SPP) waves of different
linear polarization states and phase speeds by a surface-relief grating formed
by a metal and a rugate filter, both of finite thickness, was studied
theoretically, using rigorous coupled-wave-analysis. The incident plane wave
can be either p or s polarized. The excitation of SPP waves is indicated by the
presence of those peaks in the plots of absorbance vs. the incidence angle that
are independent of the thickness of the rugate filter. The absorbance peaks
representing the excitation of s-polarized SPP waves are narrower than those
representing p-polarized SPP waves. Two incident plane waves propagating in
different directions may excite the same SPP wave. A line source could excite
several SPP waves simultaneously
Inertialess multilayer film flow with surfactant: Stability and traveling waves
Multilayer film flow down an inclined plane in the presence of an insoluble surfactant is investigated with particular emphasis on determining flow stability and investigating the possibility of traveling-wave solutions. The investigation is conducted for two or three layers under conditions of Stokes flow and, separately, on the basis of a long-wave assumption. A normal mode linear stability analysis for Stokes flow shows that adding surfactant to one of the film surfaces can destabilize an otherwise stable flow configuration. For the long-wave system, periodic traveling-wave branches are detected and traced, revealing solutions with pulselike solitary waves on each film surface traveling in phase with each other, traveling waves with capillary ridge structures, and solutions with two of the film surfaces almost in contact. Time-periodic traveling-wave solutions are also found. The stability of the traveling waves is determined by solving initial-value problems and by computing eigenvalue spectra. Boundary element simulations for Stokes flow confirm the existence of traveling waves outside the long-wave regime
Properties of multilayer filters Final report, 1 Mar. 1964 - 28 Feb. 1967
Optical interference bandpass filters for ultraviolet spectral regio
Properties of Multilayer Filters Interim Report, 1 Sep. 1965 - 28 Feb. 1966
Circuitry and calibration of solenoid actuated shutter for rapid firing of aluminum and design of ultraviolet band pass filte
Properties of multilayer filters Interim report, 1 Mar. - 31 Aug. 1969
Blocking filter effects on long-wavelength rejection of ultraviolet bandpass filte
Properties of multilayer filters Interim report, 1 Sep. 1969 - 28 Feb. 1970
Using films of gold and silver for optical filter
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
- …
