2,667 research outputs found

    Properties of multilayer filters Interim report, 1 Sep. 1969 - 28 Feb. 1970

    Get PDF
    Using films of gold and silver for optical filter

    Properties of multilayer filters Interim report, 1 Mar. - 31 Aug. 1969

    Get PDF
    Blocking filter effects on long-wavelength rejection of ultraviolet bandpass filte

    Properties of multilayer filters Final report, 1 Mar. 1964 - 28 Feb. 1967

    Get PDF
    Optical interference bandpass filters for ultraviolet spectral regio

    Macromolecular assemblages — from molecules to functional modules.

    Get PDF

    Properties of Multilayer Filters Interim Report, 1 Sep. 1965 - 28 Feb. 1966

    Get PDF
    Circuitry and calibration of solenoid actuated shutter for rapid firing of aluminum and design of ultraviolet band pass filte

    Grating-coupled excitation of multiple surface plasmon-polariton waves

    Full text link
    The excitation of multiple surface-plasmon-polariton (SPP) waves of different linear polarization states and phase speeds by a surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied theoretically, using rigorous coupled-wave-analysis. The incident plane wave can be either p or s polarized. The excitation of SPP waves is indicated by the presence of those peaks in the plots of absorbance vs. the incidence angle that are independent of the thickness of the rugate filter. The absorbance peaks representing the excitation of s-polarized SPP waves are narrower than those representing p-polarized SPP waves. Two incident plane waves propagating in different directions may excite the same SPP wave. A line source could excite several SPP waves simultaneously

    Structure of the 26S proteasome with ATP-gamma S bound provides insights into the mechanism of nucleotide-dependent substrate translocation

    Get PDF
    The 26S proteasome is a 2.5-MDa, ATP-dependent multisubunit proteolytic complex that processively destroys proteins carrying a degradation signal. The proteasomal ATPase heterohexamer is a key module of the 19S regulatory particle; it unfolds substrates and translocates them into the 20S core particle where degradation takes place. We used cryoelectron microscopy single-particle analysis to obtain insights into the structural changes of 26S proteasome upon the binding and hydrolysis of ATP. The ATPase ring adopts at least two distinct helical staircase conformations dependent on the nucleotide state. The transition from the conformation observed in the presence of ATP to the predominant conformation in the presence of ATP-gamma S induces a sliding motion of the ATPase ring over the 20S core particle ring leading to an alignment of the translocation channels of the ATPase and the core particle gate, a conformational state likely to facilitate substrate translocation. Two types of inter-subunit modules formed by the large ATPase domain of one ATPase subunit and the small ATPase domain of its neighbor exist. They resemble the contacts observed in the crystal structures of ClpX and proteasome-activating nucleotidase, respectively. The ClpX-like contacts are positioned consecutively and give rise to helical shape in the hexamer, whereas the proteasome-activating nucleotidase-like contact is required to close the ring. Conformational switching between these forms allows adopting different helical conformations in different nucleotide states. We postulate that ATP hydrolysis by the regulatory particle ATPase (Rpt) 5 subunit initiates a cascade of conformational changes, leading to pulling of the substrate, which is primarily executed by Rpt1, Rpt2, and Rpt6

    Inertialess multilayer film flow with surfactant: Stability and traveling waves

    Get PDF
    Multilayer film flow down an inclined plane in the presence of an insoluble surfactant is investigated with particular emphasis on determining flow stability and investigating the possibility of traveling-wave solutions. The investigation is conducted for two or three layers under conditions of Stokes flow and, separately, on the basis of a long-wave assumption. A normal mode linear stability analysis for Stokes flow shows that adding surfactant to one of the film surfaces can destabilize an otherwise stable flow configuration. For the long-wave system, periodic traveling-wave branches are detected and traced, revealing solutions with pulselike solitary waves on each film surface traveling in phase with each other, traveling waves with capillary ridge structures, and solutions with two of the film surfaces almost in contact. Time-periodic traveling-wave solutions are also found. The stability of the traveling waves is determined by solving initial-value problems and by computing eigenvalue spectra. Boundary element simulations for Stokes flow confirm the existence of traveling waves outside the long-wave regime
    • …
    corecore