428 research outputs found
3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions
The immobilization of enzymes in biocatalytic flow reactors is a common strategy to increase enzyme reusability and improve biocatalytic performance. Extrusion-based 3D bioprinting has recently emerged as a versatile tool for the fabrication of perfusable hydrogel grids containing entrapped enzymes for the use in such reactors. This study demonstrates the suitability of water-in-oil high internal phase emulsions (HIPEs) as 3D-printable bioinks for the fabrication of composite materials with a porous polymeric scaffold (polyHIPE) filled with enzyme-laden hydrogel. The prepared HIPEs exhibited excellent printability and are shown to be suitable for the printing of complex three-dimensional structures without the need for sacrificial support material. An automated activity assay method for the systematic screening of different material compositions in small-scale batch experiments is presented. The monomer mass fraction in the aqueous phase and the thickness of printed objects were found to be the most important parameters determining the apparent activity of the immobilized enzyme. Mass transfer limitations and enzyme inactivation were identified as probable factors reducing the apparent activity. The presented HIPE-based bioinks enable the fabrication of flow-optimized and more efficient biocatalytic reactors while the automated activity assay method allows the rapid screening of materials to optimize the biocatalytic efficiency further without time-consuming flow-through experiments involving whole printed reactors
Ziliarkörpermetastase mit Einbruch in die Irisbasis bei bekanntem Oropharynxkarzinom
Zusammenfassung: Uveametastasen stellen die häufigsten intraokulären Malignome dar. Am häufigsten ist hierbei die Aderhaut betroffen, Metastasen des Ziliarkörpers und der Iris sind deutlich seltener. Wir beschreiben erstmals einen Fall einer Ziliarkörper- und Irismetastase, ausgehend von einem Plattenepithelkarzinom des Oropharynx, und zeigen klinische und histologische Besonderheiten auf
Bubble Cutting by Cylinder – Elimination of Wettability Effects by a Separating Liquid Film
Experiments and simulations are presented for the interaction of single bubbles rising in a viscous liquid against a horizontal cylinder (Ø = 4 mm) of varying wettability. The slide-off of small and the cutting of larger bubbles into two daughter bubbles observed in the experiment are reproduced by phase-field simulations. It is shown that in the entire process bubble and cylinder are separated by a liquid film, which eliminates any influence of cylinder wettability. Before the mother bubble splits, a thinning gas thread develops below the cylinder. The rupture of this gas thread can lead to a different number of satellite bubbles depending on the conditions
Contrast Sensitivity and Night Driving in Older People: Quantifying the Relationship Between Visual Acuity, Contrast Sensitivity, and Hazard Detection Distance in a Night-Time Driving Simulator
Purpose(i) To assess how well contrast sensitivity (CS) predicts night-time hazard detection distance (a key component of night driving ability), in normally sighted older drivers, relative to a conventional measure of high contrast visual acuity (VA); (ii) To evaluate whether CS can be accurately quantified within a night driving simulator.Materials and MethodsParticipants were 15 (five female) ophthalmologically healthy adults, aged 55–81 years. CS was measured in a driving simulator using Landolt Cs, presented under static or dynamic driving conditions, and with or without glare. In the dynamic driving conditions, the participant was asked to simultaneously maintain a (virtual) speed of 60 km/h on a country road. In the with glare conditions, two calibrated LED arrays, moved by cable robots, simulated the trajectories and luminance characteristics of the (low beam) headlights of an approaching car. For comparison, CS was also measured clinically (with and without glare) using a Optovist I instrument (Vistec Inc., Olching, Germany). Visual acuity (VA) thresholds were also assessed at high and low contrast using the Freiburg Visual Acuity Test (FrACT) under photopic conditions. As a measure of driving performance, median hazard detection distance (MHDD) was computed, in meters, across three kinds of simulated obstacles of varying contrast.ResultsContrast sensitivity and low contrast VA were both significantly associated with driving performance (both P < 0.01), whereas conventional high contrast acuity was not (P = 0.10). There was good correlation (P < 0.01) between CS measured in the driving simulator and a conventional clinical instrument (Optovist I). As expected, CS was shown to decrease in the presence of glare, in dynamic driving conditions, and as a function of age (all P < 0.01).ConclusionContrast sensitivity and low contrast VA predict night-time hazard detection ability in a manner that conventional high contrast VA does not. Either may therefore provide a useful metric for assessing fitness to drive at night, particularly in older individuals. CS measurements can be made within a driving simulator, and the data are in good agreement with conventional clinical methods (Optovist I)
Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states
Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion
Large transporting regular islands are found in the classical phase space of
a modified kicked rotor system in which the kicking potential is reversed after
every two kicks. The corresponding quantum system, for a variety of system
parameters and over long time scales, is shown to display energy absorption
that is significantly faster than that associated with the underlying classical
anomalous diffusion. The results are of interest to both areas of quantum chaos
and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review
Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source
Time-resolved X-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to sub-picosecond temporal resolution and to the condensed phase. Here, we report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a table-top high-harmonic source reaching up to 350 eV, thus partially covering the spectral region of 280 to 530 eV, where water is transmissive. We use this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterize their reaction paths and observe the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes
Control of Dynamical Localization
Control over the quantum dynamics of chaotic kicked rotor systems is
demonstrated. Specifically, control over a number of quantum coherent phenomena
is achieved by a simple modification of the kicking field. These include the
enhancement of the dynamical localization length, the introduction of classical
anomalous diffusion assisted control for systems far from the semiclassical
regime, and the observation of a variety of strongly nonexponential lineshapes
for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer
new opportunities to explore quantum fluctuations and correlations in quantum
chaos.Comment: 9 pages, 7 figures, to appear in Physical Review
- …