623,958 research outputs found

    Partial and Quasi Dynamical Symmetries in Nuclei

    Get PDF
    One of the interesting aspects in the study of atomic nuclei is the strikingly regular behaviour many display in spite of being complex quantum-mechanical systems, prompting the universal question of how regularity emerges out of complexity. It is often conjectured that symmetries play a pivotal role in our understanding of this emerging simplicity. But most symmetries are likely to be broken, partial or both. Under such more realistic conditions, does the concept of symmetry still provide a basis for our understanding of regularity? I suggest that this requires the enlarged concepts of partial and quasi dynamical symmetry.Comment: 5 pages, 5 figures, accepted for publication in Nuclear Physics New

    Neutron-proton pairs in nuclei

    Get PDF
    A review is given of attempts to describe nuclear properties in terms of neutron--proton pairs that are subsequently replaced by bosons. Some of the standard approaches with low-spin pairs are recalled but the emphasis is on a recently proposed framework with pairs of neutrons and protons with aligned angular momentum. The analysis is carried out for general jj and applied to N=ZN=Z nuclei in the 1f7/21f_{7/2} and 1g9/21g_{9/2} shells.Comment: 16 figures, 4 tables, accepted for publication in Int. J. of Modern Physics

    Harmonic Superspaces from Superstrings

    Get PDF
    We derive harmonic superspaces for N=2,3,4 SYM theory in four dimensions from superstring theory. The pure spinors in ten dimensions are dimensionally reduced and yield the harmonic coordinates. Two anticommuting BRST charges implement Grassmann analyticity and harmonic analyticity. The string field theory action produces the action and field equations for N=3 SYM theory in harmonic superspace.Comment: 14 pp. Harvma

    Seniority in quantum many-body systems

    Get PDF
    The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-jj shell, its extension to the case of many, non-degenerate jj shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose--Einstein condensates of atoms with spin.Comment: 16 pages, 1 figure, accepted for publication in the Proceedings of The American Institute of Physic

    Absolute Time Derivatives

    Get PDF
    A four dimensional treatment of nonrelativistic space-time gives a natural frame to deal with objective time derivatives. In this framework some well known objective time derivatives of continuum mechanics appear as Lie-derivatives. Their coordinatized forms depends on the tensorial properties of the relevant physical quantities. We calculate the particular forms of objective time derivatives for scalars, vectors, covectors and different second order tensors from the point of view of a rotating observer. The relation of substantial, material and objective time derivatives is treated.Comment: 26 pages, 4 figures (minor revision

    Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z=1: Evolution of the Rotation Rate

    Get PDF
    We use the spatial information of our previously published VLT/FORS2 absorption line spectroscopy to measure mean stellar velocity and velocity dispersion profiles of 25 field early-type galaxies at a median redshift z=0.97 (full range 0.6<z<1.2). This provides the first detailed study of early-type galaxy rotation at these redshifts. From surface brightness profiles from HST imaging we calculate two-integral oblate axisymmetric Jeans equation models for the observed kinematics. Fits to the data yield for each galaxy the degree of rotational support and the mass-to-light ratio M/L_Jeans. S0 and Sa galaxies are generally rotationally supported, whereas elliptical galaxies rotate less rapidly or not at all. Down to M(B)=-19.5 (corrected for luminosity evolution), we find no evidence for evolution in the fraction of rotating early-type (E+S0) galaxies between z=1 (63+/-11%) and the present (61+/-5%). We interpret this as evidence for little or no change in the field S0 fraction with redshift. We compare M/L_Jeans with M/L_vir inferred from the virial theorem and globally averaged quantities and assuming homologous evolution. There is good agreement for non-rotating (mostly E) galaxies. However, for rotationally supported galaxies (mostly S0) M/L_Jeans is on average ~40% higher than M/L_vir. We discuss possible explanations and the implications for the evolution of M/L between z=1 and the present and its dependence on mass.Comment: To appear in ApJ 683 (9 pages, 7 figures). Minor changes included to match published versio
    corecore