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Abstract

We derive harmonic superspaces #oe= 2, 3,4 SYM theory in four dimensions from superstring theory. The pure spinors in
ten dimensions are dimensionally reduced and yield the harmonic coordinates. Two anticommuting BRST charges implement
Grassmann analyticity and harmonic analyticity. The string field theory action produces the action and field equa¥ien8 for
SYM theory in harmonic superspace.
0 2004 Published by Elsevier B.\pen access under CC BY license.

1. Introduction is an N = 2 WZNW model [4]. The pure spinors
in this covariant approach are real and the BRST
Pure spinorg1] in ten dimensions are complex charge map®“ into A%. In this Letter, though, we

commuting chiral spinorial ghosts® with & = 1, use complex constrainexd. Pure spinors also exist
..., 16 satisfying the ten nonlinear constraints in other dimensionEl].
X Harmonic superspatavas constructed to circum-
A9 yﬁ’%kﬁ =0 (1.1) vent the no-go theorems for a full-fledged superspace
o

description of N-extended supersymmetries (susy).
(hats denote 10-dimensional indices). They form the The main idea is to let th&-symmetry groupl (N)
starting point for a new approach to the quantization (or SU(N) for N = 4), which acts on the susy genera-
of the superstring with coordinates”, 6% and A* tors, become part of a coset approach. The generators
[2]. Due to these constraints on the troublesome

second class constraints of the superstring become

effectlvel){ first class._ One can relgx these ConStr?‘mtS 1 See[5] for a complete review of the subject and references.
and obtain a covariant formulation by introducing o useful accounts of the subject can be foundéh and in

more ghosts as Lagrange multiplig®. The result [7]. Projective harmonic superspace has been introducd@]in
Harmonic superspace for hypermultiplets and with central charges
was discussed if9], with references to earlier work cited therein.

E-mail addresses: pgrassi@insti.physics.sunysb.edu The application to the AdS/AFcorrespondence is studied [tt0],
(P.A. Grassi), vannieu@insti.physics.sunysb.edu and some developments &f = 4 harmonic superspace for SYM
(P. van Nieuwenhuizen). can be found if11] and in[12].
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of U(N) are divided into cosetanerators with coset
coordinates called harmonic variables, and subgroup
generators. Superfields depend not onlydh and
half of theg®, #%! (with,&@ = 1,2 andl =1,..., N)

but also oru’s. For N = 2, 3, 4 the cosets most often
used are

(@2 UE) U4 19
ul)’ UQxU@d SUu@xu@r (2-2)
respectively, although other choices are also possi-
ble[6].

In this Letter we present a derivation of four-
dimensional harmonic sumpaces from ten-dimen-
sional pure spinors by using ordinary dimensional re-
duction in which we set the extra six coordinates to
zero by hand. The spinoi$ decompose inta$ and
281 wherel =1,...,4 is anSU(4) ~ SO(6) index.
The main idea is to factorize the pure spinafsinto
auxiliary variablesr and1¢ with « = 1,2, and har-
monic variables:4 and v°/. In this way we factor-
ize the Lorenz group and the internal symmetry group
U (4). Using this factorization, the pure spinor con-
straints turn into constraints orf and¢, and onu¢
andp®!.

Contracting the operatdt in the BRST chargR]

Q= %dz)“& dyg

with the harmonic coordinates leads to eight spinorial
covariant derivatives

(1.3)

dé=u4dl,  d¢=1"dy, (1.9)
which satisfy the constraints
{dy. dg} =eapldf.a"}.  {dg.dj}=0. (15)

as a consequence of the constraints worand v,
and in terms of which G (Grassmann) analyticity
(dependence on half thies) of superfields is defined.

If one does not provide the information th#t and
d¢ are linear inu$ and“!, one looses information. We
therefore construct a second BRST charge which only
anticommutes withQ g if d§ andJa’? are factorized as
in (1.4). Itis constructed from the generatorsiotN)

represented by the following differential operafors
(1.6)

a __..a _ =1 a9
da/—ulau,l,/ Uy Ozl -

2 The R-symmetry grougSU(4) corresponds to the Lorentz
generators in the extra dimeoss. This suggests that the second
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Requiring that the vertex operators are annihilated by
these BRST charges should yield the field equations
of N =4 harmonic superspace. In this Letter we work
out the case oV = 3 and obtain by truncation the
field equations ofN = 3 SYM theory in harmonic
superspace. We end by deducing an actionMet 3
SYM theory in harmonic superspace from the Chern—
Simons action for string field theof¢3].

The present analysis might provide a link between
string theory with pure spinors and recent develop-
ments in twistor theory14]. Another interesting as-
pect not covered in the present letter is deformed har-
monic superspadd5]. It would be interesting to dis-
cover which kind of harmonic superspace one obtains
for suitable Ramond—Ramond background figlg].

In a future article we intend to extend these results
to the N = 4 case and construct an action fgr= 4
SYM theory[17]. In particular, this should give a con-
ceptually simple derivation of the rather complicated
measure. A similar analysis is pursued18].

2. Thecoordinatesof N=4,N=3,and N =2
harmonic super space from pure spinors

We substitute the decompositiorf = (A%, 1%¢/)
into the pure spinor constraints, and use the represen-
tation of the matriceszé"A given in[19]. In this rep-

resentation the Dirac matrices with= 0, 1, 2, 3 are
labelled byy*# and those form = 4,...,9 are la-
belled byy!/ = —y/!, and all matrix elements are
expressed in terms of Kronecker delta’s and the ep-
silon symbolse®?, ¢¢# ande//XL, The pure spinor
constraints decompose then into the following six plus
four constraints

1 _ 4
A?Eaﬁke + EEIJKLKO‘K%QML =0,

PR TR (2.1)

The first relation corresponds i = 4, ..., 9 while
the second one correspondsiie=0, 1, 2, 3. To solve
these constraints we adopt the following ansatz

A4 =i%ud, 2 =385, (2.2)

BRST charge might be obtained by dimensional reduction of the
BRST charge in ten dimensionsxtended to include the ten-
dimensional Lorentz generators.
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wherea = 1,2. The new variables¢ and v/ are To restrictU (4) to SU(4) we choose the gauge.
complex and commuting. They carGL(2, C) and Denoting this relation byN;; = 0, it is clear that
SU(4) indices. The spinora®, 14 are also complex Ny, 9%/ =0 ande!/XL Ny u% = 0 due to(2.4). This
and commuting, and carry a representatioBla®, C) leaves the phase of de’ undetermined. The gauge
and GL(2, C). In this way, we separate the Lorentz iy (2 5)sets this phase to zero.
group from the internal symmetry groig (4). 1

The decomposition i1f2.2) is left invariant by the u7eabul} — ZerykvEe Pt =0. (2.7)
gauge transformations 2

This gauge choice is preserved B§U (2) x U(2)).
uf — M%ul, rg = 2y (MY, The normalization$2.6) fix 4 real parameters for
v — M9, i‘;‘ - ig(M—l)“b, (2.3) eachGL(2,C) in (2.3). The remaining 7 real para-
_ ) ) meters ofGL(2, C) (remaining after the identification

whereM and M are independerBL (2, C) matrices. detM = detM), reproduce the subgrouf(U (2) x
The factorization(2.2) plus the gauge invariance ;o)) All equations are covariant under this sub-
(2.3) ylelds_ 16 complex parameters. To reduce to the group. Thus the coordinates;‘ — u7a with A —
usual 11 independent complex parameters of pure

i U &)
spinors, we further impose the following two covariant L....4, parametrize the Cos@fU_(ZwU(Z))'
constraints Let us turn toN = 3 harmonic superspace. If we

decompose thg's and the’?/’s into N = 3 vectors

u® Pt =0, andN = 3 scalars we have? = (A%, y*) andi%/ =

A pePrf L e ,EabiB —o0. 2.4 A%, %), In that basis, the pure spinor constraints in
atept fp T Tatapt b N (2.4) _ (2.1)become

The first one imposes four complex conditions, while P car -

the second equation is a single invariant complex A €aph’; + €ijid” Edglﬂﬁ =0,

condition. o B Taj. Tpk_
The first constraint iff2.4) and the gauge transfor- A f‘f’?w T E_’/.")‘ €apr” =0,
mations in(2.3)reduce the 16 complex components of AJA*" + y*y% =0. (2.8)

- I . .
u7 andv“’ to 8 real parameters. This is the same nUM- e requction to thev = 3 case is obtained by setting
ber as the number of indepe@ent parameters of the ¥® = 4% = 0. Inserting this ansatz into the first two

coset equations of2.8), we obtain
u@ SU(4) . i
UR)x U@ SUER) xU(Q2)) Ai€aph; =0, A eg 0" =0, (2.9)

used in[7] (see alsg12] and[10]). The restriction which is equivalent to requiring that all determinants
of U(2) x U(2) to the subgroupS(U(2) x U(2)) of order 2 of the matrices andA*' vanish. Itis well

is due to second constraint ¢2.4). The latter is ~ known (and easy to check) that if two of thex22
preserved by the transformatioms and M only after submatrices have vanishing determinant, so does the

the identification dey/ = detM. third. This implies(2.10) This means that the pure
To identify the SU(4) of the coset space, we spinors can be factorized into

introduce new coordinated™” = (u4*, u%) where AL =A%, A= R (2.10)

u‘,"i —ul, u‘,"é — ¢y, (2.5)  and the equation@.8)are solved by

andvy; = (P1)*. The matriXuf,”’i’) is a U (4) matrix v =9 =0, u;v' =0, (2.12)

because the harmonic variable$ and 9%/ satisfy So for theN = 3 case no constraint is needed fdr
the constraintg2.4) and they can be normalized as andi“. Notice that the two complex vectous andv’
follows, using the gauge transformatiq2s3), are defined up to a gauge transformation

uli = 8%, 5 vy =8, (2.6) uj —> pu;, A% — p1ae,

whereii} = (u})*. oo, Ao A8 (2.12)
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wherep, o € C. The two real parametetp| and|o | The first two equations imply that{ and 2l are
are used to impose the normalizationg’ = 1 and factorized intoAy = A%u; and 2%/ = 1957 where
v; o' = 1. If one also gauges away the overall phases u;v! = 0. The vectory! is proportional toe!/u;.
of u; and v, the space of harmonic coordinates Hence without loss of generality one may write
and v’ is parametrized by six real parameters. This

coincides with the number of free parameters of the 1% = A%u;, A =28y, (2.17)
cosetU(3)/U(1) x U(1). Indeed, we can construct
3 x 3 matrices With this parametrization of th& = 2 case there are

neither constraints on thes nor on theu's.
The vectoru; yields the usual parametrization
of N = 2 harmonic superspacgp]. Namely, one

(b ) = (0, 0, )

() [y

as follows: introduces theSU(2) matrix (u},u;) whereu; =
wb=ut0 =y, ur andu; = wth)y* with u = e;xutX. The coset
2=yt o sin SU(2)/U(1) is obtained by dividing by the subgroup
P = ik U(1) which generates the phases — ¢*“u?. In
W=u""Y =y, (2.13)  fact,Egs. (2.17)pre defined up to a rescaling o, A%

and ofu; given byu; — puy, for p # 0. This yields

whereu' = (u;)* andv; = (v')*. Fixing the phases the compact spadéPl.

of ul and u?, the u! form SU(3) matrices which
are coset representatives 9{% The U(1) x

U (1) transformations generate the phases@rgnd
arg(o). The notation:“” indicates the/ (1) x U (1)
charges of the harmonic variables and they satisfy the
hermiticity property

3. N =3 harmonic super space for SYM theory
from superstrings

The field equation folD = 4, N = 3 SYM-theory

ulga,b) — yi(-a.=b) i[go(;rdinary (not harmonic) superspace are given by
We denote by} the inverse harmonics

4 S Vi VI = s W | Vai. Vil =eysWij,
uhu! =87, u{uf:&,-’, { 0‘ _5} aé Ve ’5/} ap

.. 1 ]

detu = e’-/kul-lu?u,f =1 (2.14) {Va’ Vﬁj} =8V 3.1
For later use we also list the components of the inverse The coordinates for thi® = 3 superspacex™, 67,
matrix u';: 6%, are obtained by imposing the constrafjt =

6%* = 0. Sinced’s transform intox’s under BRST
; transformations we also impose for consistehgy=
ulz =,-D _ Eijkviuk’ 344 _ 0.
u’3 _ 0D _5i (2.15) U_s!r_lg .the Qecomp03|t|on of th¥ = 3 spinorsi{ .

andA% given in(2.10) and contracting the harmonic

Finally, we consider a further reduction 2= 2. We variables with the operatord,; in (1.3) yields two
decompose thév = 3 pure spinorst¥ and A% into new spinorial operators
a vector of N =2 and a singletA? = (A7, A3) and
2 = (381 343) wherel = 1,2. We setg andid to 06 = A%d* + 3%ds,
zero. The pure spinor equatiof%8) reduce then to

uél. = ui(fl,O) — MELO) — lzi

B 1J dy = uidy, = ujdy, = “El’O)dév
Al€aphye” =0, dzg = 0'dg; = usdsi = u' @Dy, (3.2)

3¢ 3PKe k=0
0(/3 JK El 1 i - in
P The operatod, corresponds té; D., anddz, to n' Dy,
292841 = 0. (2.16)  in[5].
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Due to the constraints on thes the operatorg/>
andds; satisfy the commutation relations

(dt.at} =0,

To derive these relations one may use the dimension-
ally reduced relations

{dy. das} =0,
(3.3)

(dh i) = cap 7.
(dh das) = 5,7,

(doi. sy} = €471

Hence,Qg (Wwhere G stands for Grassmann) is nilpo-
tent for anyr® andi®.

The BRST operatopQg implements naturally the
G-analyticity on the space of superfield§x, 6,6, A,
X, u). A superfield with ghost number zero is given
by ®(x,6,6,u) and G-analyticity mean®c® = 0
which impliesD}® = D3 ® = 0 (since{d}, & (x, ¥,
0,7, u)} = DL (x,0,6,x, %, u) and similarly for
d3g). Such a superfield is called a G-analytic superfield
in [5]. A generic superfield® (x, 6,6, A, A, u) with
ghost number one can be parametrized in terms of two
u-dependent spinorial superfields , A, as follows:

DD (x,0,0, 0, 7, u) =2%Ay + 1% Aq, (3.4)

and{Qg, ®P} = 0 implies the following constraints
on these superfields

DyAg+ DjAy =0,
DiAB + D3ﬁAa =0.

DgaAﬂ + D%Ad =0,
(3.5)

Assuming thatA, and A, factorize in the same way
asD! = u; D, and D3y = v Dg;, SO Ay = u; Al, and
Ay = ' Agi, the equationg3.5) reproduce(3.1). We
stress thaf3.5), unlike(3.1), do not put the theory on-
shell; only the extra assumption of the factorization of
A, andAg puts the theory on-shell.

Gauge transformations are generated by a ghost-
number zero scalar superfiefd©. To lowest order
in @D they reads®® = {Qg, 2©} which yields
§Aq = Dy 2 and§A, = Dy £2. Equations(3.5) are
easily solved inD = 4; they imply that the super-
fields A, and A; are pure gauge. Hence th@g-
cohomology in the space of superfields with ghost
number 1 vanishes.

To determine on which harmonic variables super-
fields depend, we construct a second BRST operator

275

On which is constructed from th8U (3) generators

d”bzufaul_b —u;aué =ulpl —ul p?, (3.6)
wherep;', can be represented b}/auﬁ’ and similarly
for p;’. These generators split into three raising op-
eratorsd =d? Y, a2 =d=1?, 4} = 41V three
lowering operatorsl? = d2Y, a3 = a1, a3 =
d“1=b, and two Cartan generatos#g andds. The
raising operators commute withg

[0, 48] = a4, 4f] = a9, 2] o
0%, d] = a4, ) = 4. 3]

-0 (3.7)

and form an algebra, in particulgd @D, 4(-1.2] =
dD. This suggests to construct a new nilpotent
BRST operatoQy

On =&7d] + E7d) + E3d5 — B3ETES, (3:8)
where we introduced new pairs of anticommuting
(anti)ghosts&s, 1), (62, BY), (€3, p2) with canonical
anticommutation relations. It is convenient to use a
notation in which theJ/ (1) x U (1) weights are made
explicitel =11 2 =£(2D anded =12,
Since Oy and Qg anticommute their sumQiot
is obviously nilpotent. A generic superfield®
with ghost number one can be decomposed into the
following pieces

45(1) — )LOZA‘(xl,O) + ):(5(14((5(0,1)

n sz(l,l) +512A(2'*1) n 52314(71,2), (3.9)

where AS?, AQY, A@=D 412 and ALD are
harmonic superfields (superfields which depend on the
variablesu). The harmonic weights of the superfields
follow from requiring that®™ has zero harmonic
weight, just like the BRST charg®i,t. Note that
@D depends only upon the variablesé, 8, 1, &'s
and u’s and not upon the conjugated momenta as
a consequence of quantum mechanical rules. This
forbids ghost-number one combinations of the form
BES, BEA, ...

The equations of motion fov = 3 SYM follow
from the BRST-cohomology equations

{Otor, @} + %{qﬁm,cb(l)} =0. (3.10)
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Decomposing the superfield® into & + @, Eq. (3.12)becomes
wherea]” denotes the terms with-ghosts andbél) 101 L0 (12 _ nLO L)
. D~V =D,V =D,V =0,

the terms withh-ghosts, the Maurer—Cartan equations 01 01 o1
in (3.10)decompose as follows: D( @b D( y (12 = D( &y

1 =0, (3.17)

1 1) 5

{Qc.2¢'} + 5 (25" @5’} =0. (3.11) . . |

2 expressing the G-analyticity of the harmonic connec-

{06, 2} +{0on, 2} + {2, 2} =0, (3.12)  tions V@D, v2-D and v(-1.2. The last equation
1 (3.13)finally gives the SYM equations of motion of

(1) D 5@ .

{On, @} + E{CDH , Py} =0. (313) N =3 harmonic superspace

This system of equations is invariant under the infini- pH@-1y (=12 _ p(-12),@2-D
tesimal gauge transformation
gaug n [V(Z,—l), V(—1,2)] —yan,

oW - oD 4 {Qrer, 2} + {0V, 2}, 314  pe-hyadh_ pabye-D

where 2 is a generic harmonic superfield with ghost + [V(Z"l), V(l,l)] =0,
number zero. According to the above decomposition D12y _ pAby(-12)

of @@ one obtains
+ [V yah] <o, (3.18)

08 =106, 2} + {0, 2}, LY p-1

@ _ (1) where the harmonic derivative®'*+, D<~Y and
60 =10n. 2+ {2y, 2}. D12 represent the action otV 4@~ and

To reduce the system of equationg&11)—(3.13) d=12 onu-dependent superfields. These are the field
to the field equations of harmonic superspace, we useequations ofN = 3 SYM harmonic superspace, see
the fact thatQg has no cohomology. This implies that  Eq. (12.57) in[5]. Egs. (3.17), (3.18pre invariant
Eq. (3.11)is solved by a pure gauge superfield under the gauge transformations

(p(l) Ze—iA(Q eiA) sV2-D _ pR-D, 4 [V(z,fl) ]

whereA is a ghost-number zero superfield known in  §v 12 = p-124 4 [V (12 o],

the literature as théridge (see, for example[5]). L1 _ LD (1.1

Also the BRST cohomology 0Dy vanishes on the v =D e+ [V ’w]’ (3.19)

unconstrained superspace and therefore one can alsavhere the superfield satisfies

solve the systen(3.11)—(3.13)starting from the last _ 0.1

equation. DOw =0, Dé D=0 (3.20)
In the harmonic superspace framework, one usually

employs the bridge superfield(x, 6,6, u) to bring

the spinorial covariant derivatives to the ‘pure gauge’ 4 Theaction and measurefor N =3 SYM theory

form
We start from the observation that the field equa-

tions(3.10)are of Chern—Simons form and can be de-
vOD _ efiAd'éO,l)eiA. (3.15) rived from an action of the form

o

VL0 _ ,1440.0,i4

Here the bridge is seen as the most general solution gq — /d,u(qb(l) Otor®® + g@(l) xo® *¢(1)>
of Eq. (3.11) By making a finite gauge transformation 3

which setsa’ = 0, the gauge transformed;” is (4.1)
given by wherex denotes conventional matrix multiplication.
Zid (D) The measurd . has to be determined.
(P + Qn)e Instead of dimensionally reducirg.1) we follow

=£3v@D L g2y @D 4 By (12 (3.16)  a different path. We have to define the integration
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measure for all zero modes in the theory. Since we are
dealing with worldline models, the only contribution
comes from the zero modes:of, 6%, 6%, 1%, %%, u!
andg3, £2, £3. The set of ghosts?, A%’ pertains to the
BRST chargel s which implements the G-analyticity.
Therefore, they implementkematical constraints on
the theory expressed by the equations:

[QG, Sn=3] =0, [QG,dun] =0, (4.2)

whereSy—3 is the off-shellN = 3 action andiuy is

277

As suggested by this enumeration, we use the

following set of 18 integration variables

Ul uo v1 v3
=—, p=—, WB=—, 4=—,
u3 u3 v3 v2
-3 -2
2 U 2 v
[uz|®,  —, Jv2|%,  —,
u3 2
-3
- — w
wy, WY, wy, W%, |ws’, — (4.5)
w3

the invariant measure in the space of the zero modes ofgng the conjugates afs.

X, 0%, 0%, u! andgd, €2, £3. In addition,Sy—3 has
zero ghost number, whiléuy has ghost number three.
Form[2] and[21] it is known thatduy € H3(Qn).
This implies thatduy = d&ddeZde3dy’, where the
measure/y’ = du'(x*, 0%, 0% u!) has to be fixed by
the G-analyticity(4.2).

First we consider the space formed.y, 6%, 6%
The conditions in(4.2) select the analytic subspace
@, 00 0P 69 6y where 9@ =
u'@bg;, and x3% = x*¢ 4 2ig*(-10GéL0 4
2i9*0:Dee0.~ Therefore, the only invariant mea-
sure is given by

d/,L/ — d4.XA d29(0,1) d20(1,—1) dZé(l,O)

x d?0 Y dp,, (4.3)

whered ., is the measure for the harmonic variables.
In order to derive aQg invariant measurefu,,
we introduce the new variables (projective harmonic
variableq22])
ui
1=—,
u3s
The measurd u, for the N = 3 harmonic space is
the Haar measure for the cosgi(3)/U (1) x U(1).
We compute it as follows. There are 18 real matrix el-
ements for a general8 3 complex matrix, which we
denote by the column vecto(s;, v;, w;) (i =1, 2, 3)
and their complex conjugates. The orthormality rela-
tions yield 9 real constraints. They allow one to ex-
pressw; in terms ofu; andv; asw; = ei,-kzzfﬁk up to
a phase which will drop out. One is left with the 6 real
z variables in(4.4) and three angles. One of these an-
gles is fixed by the requirement that the determinant
be unity, while the two remaining angles parametrize
the subgroup/ (1) x U(1).

uz
2=—),
us

v1

3= —. (4.4)
v2

The integration over the delta functions which en-

force the othornormality relations yields unity. Name-

ly,

(1) [dwidwls(w;i') yields|ui| =2,

(2) [dwadw?s(w;v') yields [u1|?/|ws|?,

() [dlwa?s(lw? — 1) vyields [1 + |w1/w3|® +
lwa/w3?].

The product of these contributions is unity.

(4) [dluz28(|u|? — 1) yields |ug| 2 = (1 + |21/ +
|z21%),

(5) [dlv2l?8(|v]? — 1) gives |v2| 2 =1+ |z3]2 +
|22 + 21732,

(6) fdz4d248(u - v) cancels the previous two contri-
butions because - v = u3v2(z12° + z2 + 7%).

One thus only obtains a contribution of the Jaco-
bian. The evaluation of a 18 18 Jacobian may seems
daunting, but most terms vanish, and one easily derives
by hand

J = ’u§u3ﬁ3v§v262|
1
B (14 1211% + 1221H2(A + |32 + |22 + 2123|%)2
(4.6)
This yields Haar measure f&U(3)/U (1) x U(1)

and agrees with{22] except for the power in the
denominator

I—[?=1dZi dz7’
1+ 12112 + 1221221 + |z3]% + |22 + 2128]%)?
4.7)

duy =
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To conclude, the action foiV = 3 SYM in har-
monic superspace is given by

S = f de3dg? de3 d*x o d?0O
% d29(1,—1) dZé(l,O) dZé(—l,l) dl/Lu
2
x (cbf}) ool + écbl(j) « @ % cbfj)),

(4.8)
WherecD,(j) is given by the right hand side ¢8.16)

and S coincides with the action given ifb] after the
integration over the ghost fieldss is performed.
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