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Abstract

We derive harmonic superspaces forN = 2,3,4 SYM theory in four dimensions from superstring theory. The pure spino
ten dimensions are dimensionally reduced and yield the harmonic coordinates. Two anticommuting BRST charges im
Grassmann analyticity and harmonic analyticity. The string field theory action produces the action and field equations fN = 3
SYM theory in harmonic superspace.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

Pure spinors[1] in ten dimensions are comple
commuting chiral spinorial ghostsλα̂ with α̂ = 1,

. . . ,16 satisfying the ten nonlinear constraints

(1.1)λα̂γ m̂

α̂β̂
λβ̂ = 0

(hats denote 10-dimensional indices). They form
starting point for a new approach to the quantizat
of the superstring with coordinatesxm̂, θ α̂ and λα̂

[2]. Due to these constraints onλ, the troublesome
second class constraints of the superstring bec
effectively first class. One can relax these constra
and obtain a covariant formulation by introduci
more ghosts as Lagrange multipliers[3]. The result
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0370-2693  2004 Published by Elsevier B.V.
doi:10.1016/j.physletb.2004.04.051

Open access under CC BY 
is an N = 2 WZNW model [4]. The pure spinors
in this covariant approach are real and the BR
charge mapsθ α̂ into λα̂ . In this Letter, though, we
use complex constrainedλα̂ . Pure spinors also exis
in other dimensions[1].

Harmonic superspace1 was constructed to circum
vent the no-go theorems for a full-fledged supersp
description ofN -extended supersymmetries (sus
The main idea is to let theR-symmetry groupU(N)

(or SU(N) for N = 4), which acts on the susy gener
tors, become part of a coset approach. The gener

1 See[5] for a complete review of the subject and referenc
Two useful accounts of the subject can be found in[6] and in
[7]. Projective harmonic superspace has been introduced in[8].
Harmonic superspace for hypermultiplets and with central cha
was discussed in[9], with references to earlier work cited therei
The application to the AdS/CFT correspondence is studied in[10],
and some developments ofN = 4 harmonic superspace for SYM
can be found in[11] and in[12].
license.
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of U(N) are divided into coset generators with cose
coordinatesu called harmonic variables, and subgro
generators. Superfields depend not only onxm and
half of theθα

I , θ̄ α̇I (with α, α̇ = 1,2 andI = 1, . . . ,N )
but also onu’s. For N = 2,3,4 the cosets most ofte
used are

(1.2)
SU(2)

U(1)
,

SU(3)

U(1) × U(1)
,

SU(4)

S[U(2) × U(2)] ,
respectively, although other choices are also po
ble [6].

In this Letter we present a derivation of fou
dimensional harmonic superspaces from ten-dimen
sional pure spinors by using ordinary dimensional
duction in which we set the extra six coordinates
zero by hand. The spinorsλα̂ decompose intoλα

I and
λ̄α̇I whereI = 1, . . . ,4 is anSU(4) ∼ SO(6) index.
The main idea is to factorize the pure spinorsλα̂ into
auxiliary variablesλα

a and λ̄α̇
a with a = 1,2, and har-

monic variablesua
I and v̄aI . In this way we factor-

ize the Lorenz group and the internal symmetry gro
SU(4). Using this factorization, the pure spinor co
straints turn into constraints onλα

a andλ̄α̇
a , and onua

I

andv̄aI .
Contracting the operatordzα̂ in the BRST charge[2]

(1.3)Q =
∮

dzλα̂ dzα̂,

with the harmonic coordinates leads to eight spino
covariant derivatives

(1.4)da
α = ua

I d
I
α, d̄a

α̇ = v̄aI d̄α̇I ,

which satisfy the constraints

(1.5)
{
da
α, db

β

} = εαβ

{
d̄a
α̇ , d̄ α̇b

}
,

{
da
α, d̄b

β̇

} = 0,

as a consequence of the constraints onu and v̄,
and in terms of which G (Grassmann) analytic
(dependence on half theθ ’s) of superfields is defined

If one does not provide the information thatda
α and

d̄a
α̇ are linear inua

I andv̄aI , one looses information. W
therefore construct a second BRST charge which o
anticommutes withQH if da

α andd̄a
α̇ are factorized as

in (1.4). It is constructed from the generators ofU(N)

represented by the following differential operators2

(1.6)da
a′ = ua

I ∂ua′
I

− ūI
a′∂ūI

a
.

2 The R-symmetry groupSU(4) corresponds to the Lorent
generators in the extra dimensions. This suggests that the seco
Requiring that the vertex operators are annihilated
these BRST charges should yield the field equati
of N = 4 harmonic superspace. In this Letter we wo
out the case ofN = 3 and obtain by truncation th
field equations ofN = 3 SYM theory in harmonic
superspace. We end by deducing an action forN = 3
SYM theory in harmonic superspace from the Che
Simons action for string field theory[13].

The present analysis might provide a link betwe
string theory with pure spinors and recent devel
ments in twistor theory[14]. Another interesting as
pect not covered in the present letter is deformed
monic superspace[15]. It would be interesting to dis
cover which kind of harmonic superspace one obta
for suitable Ramond–Ramond background fields[16].

In a future article we intend to extend these res
to theN = 4 case and construct an action forN = 4
SYM theory[17]. In particular, this should give a con
ceptually simple derivation of the rather complicat
measure. A similar analysis is pursued in[18].

2. The coordinates of N = 4, N = 3, and N = 2
harmonic superspace from pure spinors

We substitute the decompositionλα̂ = (λα
I , λ̄α̇I )

into the pure spinor constraints, and use the repre
tation of the matricesγ m̂

α̂β̂
given in [19]. In this rep-

resentation the Dirac matrices withm = 0,1,2,3 are
labelled byγ αβ̇ and those form = 4, . . . ,9 are la-
belled byγ IJ = −γ JI , and all matrix elements ar
expressed in terms of Kronecker delta’s and the
silon symbolsεαβ, εα̇β̇ and εIJKL. The pure spino
constraints decompose then into the following six p
four constraints

λα
I εαβλ

β
J + 1

2
εIJKLλ̄α̇Kεα̇β̇ λ̄β̇L = 0,

(2.1)λα
I λ̄α̇I = 0.

The first relation corresponds tom = 4, . . . ,9 while
the second one corresponds tom = 0,1,2,3. To solve
these constraints we adopt the following ansatz

(2.2)λα
I = λα

a ua
I , λ̄α̇J = λ̄α̇

a v̄aJ ,

BRST charge might be obtained by dimensional reduction of
BRST charge in ten dimensions, extended to include the ten
dimensional Lorentz generators.
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where a = 1,2. The new variablesua
I and v̄aJ are

complex and commuting. They carryGL(2,C) and
SU(4) indices. The spinorsλα

a , λ̄α̇
a are also complex

and commuting, and carry a representation ofSL(2,C)

and GL(2,C). In this way, we separate the Loren
group from the internal symmetry groupSU(4).

The decomposition in(2.2) is left invariant by the
gauge transformations

ua
I → Ma

bu
b
I , λα

a → λα
b

(
M−1)a

b,

(2.3)v̄aJ → M̄a
bv̄

bJ , λ̄α̇
a → λ̄α̇

b

(
M̄−1)a

b,

whereM andM̄ are independentGL(2,C) matrices.
The factorization(2.2) plus the gauge invarianc
(2.3) yields 16 complex parameters. To reduce to
usual 11 independent complex parameters of p
spinors, we further impose the following two covaria
constraints

ua
I v̄

bI = 0,

(2.4)λα
a εαβεabλ

β
b + λ̄α̇

a εα̇β̇εabλ̄
β̇
b = 0.

The first one imposes four complex conditions, wh
the second equation is a single invariant comp
condition.

The first constraint in(2.4)and the gauge transfo
mations in(2.3)reduce the 16 complex components
ua

I andv̄aI to 8 real parameters. This is the same nu
ber as the number of independent parameters of th
coset

U(4)

U(2) × U(2)
= SU(4)

S(U(2) × U(2))

used in[7] (see also[12] and [10]). The restriction
of U(2) × U(2) to the subgroupS(U(2) × U(2))

is due to second constraint of(2.4). The latter is
preserved by the transformationsM andM̄ only after
the identification detM = detM̄ .

To identify the SU(4) of the coset space, w

introduce new coordinatesua,ḃ
I = (u

a,1̇
I , u

a,2̇
I ) where

(2.5)u
a,1̇
I = ua

I , u
a,2̇
I = εabvbI ,

andvbI = (v̄bI )∗. The matrixu
(a,ḃ)
I is a U(4) matrix

because the harmonic variablesua
I and v̄aI satisfy

the constraints(2.4) and they can be normalized
follows, using the gauge transformations(2.3),

(2.6)ua
I ū

I
b = δa

b, v̄aI vbI = δa
b,

whereūI
b = (ub

I )
∗.
To restrict U(4) to SU(4) we choose the gaug
Denoting this relation byNIJ = 0, it is clear that
NIJ v̄aJ = 0 andεIJKLNKLua

J = 0 due to(2.4). This

leaves the phase of detuaḃ
I undetermined. The gaug

in (2.5)sets this phase to zero.

(2.7)ua
I εabu

b
J − 1

2
εIJKLv̄aKεabv̄

bL = 0.

This gauge choice is preserved byS(U(2) × U(2)).
The normalizations(2.6) fix 4 real parameters fo

eachGL(2,C) in (2.3). The remaining 7 real para
meters ofGL(2,C) (remaining after the identificatio
detM = detM̄), reproduce the subgroupS(U(2) ×
U(2)). All equations are covariant under this su
group. Thus the coordinatesuA

I ≡ u
a,ȧ
I , with A =

1, . . . ,4, parametrize the coset SU(4)
S(U(2)×U(2))

.
Let us turn toN = 3 harmonic superspace. If w

decompose theλα
I ’s and theλ̄α̇I ’s into N = 3 vectors

andN = 3 scalars we haveλα
I = (λα

i ,ψα) andλ̄α̇I =
(λ̄α̇i , ψ̄α̇). In that basis, the pure spinor constraints
(2.1)become

λα
i εαβλ

β
j + εijk λ̄

α̇kεα̇β̇ ψ̄ β̇ = 0,

λα
i εαβψβ + εijk λ̄

α̇j εα̇β̇ λ̄β̇k = 0,

(2.8)λα
i λ̄α̇i + ψαψ̄α̇ = 0.

The reduction to theN = 3 case is obtained by settin
ψα = ψ̄α̇ = 0. Inserting this ansatz into the first tw
equations of(2.8), we obtain

(2.9)λα
i εαβλ

β
j = 0, λ̄α̇j εα̇β̇ λ̄β̇k = 0,

which is equivalent to requiring that all determinan
of order 2 of the matricesλα

i andλ̄α̇i vanish. It is well
known (and easy to check) that if two of the 2× 2
submatrices have vanishing determinant, so does
third. This implies(2.10). This means that the pur
spinors can be factorized into

(2.10)λα
i = λαui, λ̄α̇i = λ̄α̇ v̄i ,

and the equations(2.8)are solved by

(2.11)ψα = ψ̄α̇ = 0, ui v̄
i = 0.

So for theN = 3 case no constraint is needed forλα

andλ̄α̇ . Notice that the two complex vectorsui andv̄i

are defined up to a gauge transformation

ui → ρui, λα → ρ−1λα,

(2.12)v̄i → σ v̄i , λ̄α̇ → σ−1λ̄α̇
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whereρ,σ ∈ C. The two real parameters|ρ| and|σ |
are used to impose the normalizationsui ū

i = 1 and
vi v̄

i = 1. If one also gauges away the overall pha
of ui and v̄i , the space of harmonic coordinatesui

and v̄i is parametrized by six real parameters. T
coincides with the number of free parameters of
cosetSU(3)/U(1) × U(1). Indeed, we can constru
3× 3 matrices(
u1

i , u
2
i , u

3
i

) = (
u

(1,0)
i , u

(0,−1)
i , u

(−1,1)
i

)
as follows:

u1
i ≡ u

(1,0)
i = ui,

u2
i ≡ u

(−1,1)
i = εijk v̄

j ūk,

(2.13)u3
i ≡ u

(0,−1)
i = vi,

where ūi = (ui)
∗ and vi = (v̄i )∗. Fixing the phases

of u1
i and u3

i , the uI
i form SU(3) matrices which

are coset representatives ofSU(3)
U(1)×U(1)

. The U(1) ×
U(1) transformations generate the phases arg(ρ) and
arg(σ ). The notationu(a,b)

i indicates theU(1) × U(1)

charges of the harmonic variables and they satisfy
hermiticity property

u
(a,b)
i = ui(−a,−b).

We denote byui
I the inverse harmonics

ui
I u

J
i = δI

J , uI
i u

j
I = δi

j ,

(2.14)detu = εijku1
i u

2
ju

3
k = 1.

For later use we also list the components of the inve
matrixui

I :

ui
1 ≡ ui(−1,0) = u

(1,0)
i = ūi ,

ui
2 ≡ ui(1,−1) = εijkvj uk,

(2.15)ui
3 ≡ ui(0,1) = v̄i .

Finally, we consider a further reduction toN = 2. We
decompose theN = 3 pure spinorsλα

i and λ̄α̇i into
a vector ofN = 2 and a singlet,λα

i = (λα
I , λα

3) and
λ̄α̇i = (λ̄α̇I , λ̄α̇3) whereI = 1,2. We setλα

3 andλ̄α̇
3 to

zero. The pure spinor equations(2.8)reduce then to

λα
I εαβλ

β
J εIJ = 0,

λ̄α̇J εα̇β̇ λ̄β̇KεJK = 0,

(2.16)λα
I λ̄α̇I = 0.
The first two equations imply thatλα
I and λ̄α̇I are

factorized intoλα
I = λαuI and λ̄α̇J = λ̄α̇ v̄J where

uI v̄
I = 0. The vectorv̄I is proportional toεIJ uJ .

Hence without loss of generality one may write

(2.17)λα
I = λαuI , λ̄α̇J = λ̄α̇εIJ uI .

With this parametrization of theN = 2 case there ar
neither constraints on theλ’s nor on theu’s.

The vectoruI yields the usual parametrizatio
of N = 2 harmonic superspace[5]. Namely, one
introduces theSU(2) matrix (u+

I , u−
I ) where u+

I =
uI andu−

I = (u+I )∗ with u+
J = εJKu+K . The coset

SU(2)/U(1) is obtained by dividing by the subgrou
U(1) which generates the phasesu±

I → e±iαu±
I . In

fact,Eqs. (2.17)are defined up to a rescaling ofλα, λ̄α̇

and ofuI given byuI → ρuI , for ρ �= 0. This yields
the compact spaceCP1.

3. N = 3 harmonic superspace for SYM theory
from superstrings

The field equation forD = 4, N = 3 SYM-theory
in ordinary (not harmonic) superspace are given
[20]

{∇i
α,∇j

β

} = εαβW̄ ij ,
{∇̄α̇i , ∇̄β̇j

} = εα̇β̇Wij ,

(3.1)
{∇i

α, ∇̄β̇j

} = δi
j∇αβ̇ .

The coordinates for thisN = 3 superspace,(xm, θα
i ,

θ̄ α̇i ), are obtained by imposing the constraintθα
4 =

θ̄ α̇4 = 0. Sinceθ ’s transform intoλ’s under BRST
transformations we also impose for consistencyλα

4 =
λ̄α̇4 = 0.

Using the decomposition of theN = 3 spinorsλα
i

andλ̄α̇i given in(2.10), and contracting the harmon
variables with the operatorsdzα̂ in (1.3) yields two
new spinorial operators

QG = λαd1
α + λ̄α̇ d̄3α̇,

d1
α = uid

i
α = u1

i d
i
α = u

(1,0)
i di

α,

(3.2)d̄3α̇ = v̄i d̄α̇i = ui
3d̄α̇i = ui(0,1)d̄α̇i .

The operatord1
α corresponds toξiD

i
α andd̄3α̇ to ηiD̄α̇i

in [5].
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Due to the constraints on theu’s the operatorsd1
α

andd̄3α̇ satisfy the commutation relations
{
d1
α, d1

β

} = 0,
{
d1
α, d̄3β̇

} = 0,

(3.3)
{
d̄3α̇, d̄3β̇

} = 0.

To derive these relations one may use the dimens
ally reduced relations
{
di
α, d

j
β

} = εαβΠij ,
{
d̄α̇i , d̄β̇j

} = εα̇β̇Π̄ij ,{
di
α, d̄α̇j

} = δi
jΠαβ̇ .

Hence,QG (where G stands for Grassmann) is nilp
tent for anyλα andλ̄α̇ .

The BRST operatorQG implements naturally the
G-analyticity on the space of superfieldsΦ(x, θ, θ̄, λ,

λ̄, u). A superfield with ghost number zero is give
by Φ(x, θ, θ̄ , u) and G-analyticity meansQGΦ = 0
which impliesD1

αΦ = D̄3α̇Φ = 0 (since{d1
α,Φ(x, θ,

θ̄ , λ, λ̄, u)} = D1
αΦ(x, θ, θ̄ , λ, λ̄, u) and similarly for

d̄3α̇). Such a superfield is called a G-analytic superfi
in [5]. A generic superfieldΦ(x, θ, θ̄, λ, λ̄, u) with
ghost number one can be parametrized in terms of
u-dependent spinorial superfieldsAα, Āα̇ as follows:

(3.4)Φ(1)(x, θ, θ̄, λ, λ̄, u) = λαAα + λ̄α̇Āα̇,

and{QG,Φ(1)} = 0 implies the following constraint
on these superfields

D1
αAβ + D1

βAα = 0, D̄3α̇Āβ̇ + D̄3β̇ Āα̇ = 0,

(3.5)D1
αĀβ̇ + D̄3β̇Aα = 0.

Assuming thatAα andAα̇ factorize in the same wa
asD1

α = uiD
i
α andD̄3α̇ = v̄i D̄α̇i , soAα = uiA

i
α and

Aα̇ = v̄iAα̇i , the equations(3.5) reproduce(3.1). We
stress that(3.5), unlike(3.1), do not put the theory on
shell; only the extra assumption of the factorization
Aα andAα̇ puts the theory on-shell.

Gauge transformations are generated by a gh
number zero scalar superfieldΩ(0). To lowest order
in Φ(1) they readδΦ(1) = {QG,Ω(0)} which yields
δAα = DαΩ and δAα̇ = D̄α̇Ω . Equations(3.5) are
easily solved inD = 4; they imply that the super
fields Aα and Āα̇ are pure gauge. Hence theQG-
cohomology in the space of superfields with gh
number 1 vanishes.

To determine on which harmonic variables sup
fields depend, we construct a second BRST oper
QH which is constructed from theSU(3) generators

(3.6)da
b = ua

i ∂ub
i
− ui

b∂ui
a
= ua

i p
i
b − ui

bp
a
i ,

wherepi
b can be represented by∂/∂ub

i and similarly
for pb

i . These generators split into three raising o
eratorsd1

2 = d(2,−1), d2
3 = d(−1,2), d1

3 = d(1,1), three
lowering operatorsd2

1 = d(−2,1), d3
2 = d(1,−2), d3

1 =
d(−1,−1), and two Cartan generatorsd1

1 andd2
2. The

raising operators commute withQG[
d(2,−1), d1

α

] = [
d(−1,2), d1

α

] = [
d(1,1), d1

α

] = 0,

(3.7)

[
d(2,−1), d3α̇

] = [
d(−1,2), d3α̇

] = [
d(1,1), d3α̇

]
= 0

and form an algebra, in particular[d(2,−1), d(−1,2)] =
d(1,1). This suggests to construct a new nilpot
BRST operatorQH

(3.8)QH = ξ3
1d1

3 + ξ2
1d1

2 + ξ3
2d2

3 − β1
3ξ2

1ξ3
2 ,

where we introduced new pairs of anticommuti
(anti)ghosts(ξ3

1 , β1
3), (ξ2

1 , β1
2), (ξ3

2 , β2
3) with canonical

anticommutation relations. It is convenient to use
notation in which theU(1) × U(1) weights are made
explicit ξ3

1 ≡ ξ(−1,−1), ξ2
1 ≡ ξ(−2,1) andξ3

2 = ξ(1,−2).
Since QH and QG anticommute their sumQtot

is obviously nilpotent. A generic superfieldΦ(1)

with ghost number one can be decomposed into
following pieces

Φ(1) = λαA(1,0)
α + λ̄α̇Ā

(0,1)
α̇

(3.9)+ ξ3
1A(1,1) + ξ2

1A(2,−1) + ξ3
2A(−1,2),

whereA
(1,0)
α , Ā

(0,1)
α̇ , A(2,−1), A(−1,2) and A(1,1) are

harmonic superfields (superfields which depend on
variablesu). The harmonic weights of the superfiel
follow from requiring thatΦ(1) has zero harmoni
weight, just like the BRST chargeQtot. Note that
Φ(1) depends only upon the variablesx, θ, θ̄, λ, λ̄’s
and u’s and not upon the conjugated momenta
a consequence of quantum mechanical rules.
forbids ghost-number one combinations of the fo
βξξ, βξλ, . . . .

The equations of motion forN = 3 SYM follow
from the BRST-cohomology equations

(3.10)
{
Qtot,Φ

(1)
} + 1

2

{
Φ(1),Φ(1)

} = 0.
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Decomposing the superfieldΦ(1) into Φ
(1)
H + Φ

(1)
G ,

whereΦ
(1)
H denotes the terms withξ -ghosts andΦ(1)

G
the terms withλ-ghosts, the Maurer–Cartan equatio
in (3.10)decompose as follows:

(3.11)
{
QG,Φ

(1)
G

} + 1

2

{
Φ

(1)
G ,Φ

(1)
G

} = 0,

(3.12)
{
QG,Φ

(1)
H

} + {
QH,Φ

(1)
G

} + {
Φ

(1)
G ,Φ

(1)
H

} = 0,

(3.13)
{
QH,Φ

(1)
H

} + 1

2

{
Φ

(1)
H ,Φ

(1)
H

} = 0.

This system of equations is invariant under the infi
tesimal gauge transformation

(3.14)Φ(1) → Φ(1) + {Qtot,Ω} + {
Φ(1),Ω

}
,

whereΩ is a generic harmonic superfield with gho
number zero. According to the above decomposi
of Φ(1), one obtains

δΦ
(1)
G = {QG,Ω} + {

Φ
(1)
G ,Ω

}
,

δΦ
(1)
H = {QH,Ω} + {

Φ
(1)
H ,Ω

}
.

To reduce the system of equations in(3.11)–(3.13)
to the field equations of harmonic superspace, we
the fact thatQG has no cohomology. This implies th
Eq. (3.11)is solved by a pure gauge superfield

Φ
(1)
G = e−i∆

(
QGei∆

)
,

where∆ is a ghost-number zero superfield known
the literature as thebridge (see, for example,[5]).
Also the BRST cohomology ofQH vanishes on the
unconstrained superspace and therefore one can
solve the system(3.11)–(3.13)starting from the las
equation.

In the harmonic superspace framework, one usu
employs the bridge superfield∆(x, θ, θ̄, u) to bring
the spinorial covariant derivatives to the ‘pure gau
form

∇(1,0)
α = e−i∆d(1,0)

α ei∆,

(3.15)∇̄(0,1)
α̇ = e−i∆d̄

(0,1)
α̇ ei∆.

Here the bridge is seen as the most general solu
of Eq. (3.11). By making a finite gauge transformatio
which setsΦ(1)

G = 0, the gauge transformedΦ(1)
H is

given by

e−i∆
(
Φ

(1)
H + QH

)
ei∆

(3.16)= ξ3
1V (1,1) + ξ2

1V (2,−1) + ξ3
2V (−1,2).
o

Eq. (3.12)becomes

D(1,0)
α V (2,−1) = D(1,0)

α V (−1,2) = D(1,0)
α V (1,1) = 0,

(3.17)

D̄
(0,1)
α̇ V (2,−1) = D̄

(0,1)
α̇ V (−1,2) = D̄

(0,1)
α̇ V (1,1)

= 0,

expressing the G-analyticity of the harmonic conn
tions V (1,1), V (2,−1) and V (−1,2). The last equation
(3.13)finally gives the SYM equations of motion o
N = 3 harmonic superspace

D(2,−1)V (−1,2) − D(−1,2)V (2,−1)

+ [
V (2,−1), V (−1,2)

] = V (1,1),

D(2,−1)V (1,1) − D(1,1)V (2,−1)

+ [
V (2,−1), V (1,1)

] = 0,

D(−1,2)V (1,1) − D(1,1)V (−1,2)

(3.18)+ [
V (−1,2), V (1,1)

] = 0,

where the harmonic derivativesD(1,1), D(2,−1) and
D(−1,2) represent the action ofd(1,1), d(2,−1) and
d(−1,2) onu-dependent superfields. These are the fi
equations ofN = 3 SYM harmonic superspace, s
Eq. (12.57) in[5]. Eqs. (3.17), (3.18)are invariant
under the gauge transformations

δV (2,−1) = D(2,−1)ω + [
V (2,−1),ω

]
,

δV (−1,2) = D(−1,2)ω + [
V (−1,2),ω

]
,

(3.19)δV (1,1) = D(1,1)ω + [
V (1,1),ω

]
,

where the superfieldω satisfies

(3.20)D(1,0)
α ω = 0, D̄

(0,1)
α̇ ω = 0.

4. The action and measure for N = 3 SYM theory

We start from the observation that the field eq
tions(3.10)are of Chern–Simons form and can be d
rived from an action of the form

(4.1)

SCS =
∫

dµ

(
Φ(1)QtotΦ

(1) + 2

3
Φ(1) � Φ(1) � Φ(1)

)

where� denotes conventional matrix multiplicatio
The measuredµ has to be determined.

Instead of dimensionally reducing(4.1) we follow
a different path. We have to define the integrat
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measure for all zero modes in the theory. Since we
dealing with worldline models, the only contributio
comes from the zero modes ofxµ, θα

i , θ̄ α̇i , λα
i , λ̄α̇i , uI

i

andξ3
1 , ξ2

1 , ξ3
2 . The set of ghostsλα

i , λ̄α̇i pertains to the
BRST chargeQG which implements the G-analyticity
Therefore, they implement kinematical constraints o
the theory expressed by the equations:

(4.2)[QG, SN=3] = 0, [QG, dµH] = 0,

whereSN=3 is the off-shellN = 3 action anddµH is
the invariant measure in the space of the zero mode
xµ, θα

i , θ̄ α̇i , uI
i andξ3

1 , ξ2
1 , ξ3

2 . In addition,SN=3 has
zero ghost number, whiledµH has ghost number thre
Form [2] and [21] it is known thatdµH ∈ H 3(QH).
This implies thatdµH = dξ3

1 dξ2
1 dξ3

2 dµ′, where the
measuredµ′ = dµ′(xµ, θα

i , θ̄ α̇i , uI
i ) has to be fixed by

the G-analyticity(4.2).
First we consider the space formed byxµ, θα

i , θ̄ α̇i .
The conditions in(4.2) select the analytic subspa
(xm

A , θ
(0,1)
α , θ

(1,−1)
α , θ̄

(1,0)
α̇ , θ̄

(−1,1)
α̇ ), where θ(a,b) =

ui(a,b)θi , and xαα̇
A = xαα̇ + 2iθα(−1,0)θ̄ α̇(1,0) +

2iθα(0,1)θ̄ α̇(0,−1). Therefore, the only invariant mea
sure is given by

dµ′ = d4xA d2θ(0,1) d2θ(1,−1) d2θ̄ (1,0)

(4.3)× d2θ̄ (−1,1) dµu,

wheredµu is the measure for the harmonic variabl
In order to derive aQG invariant measuredµu,
we introduce the new variables (projective harmo
variables[22])

(4.4)z1 = u1

u3
, z2 = u2

u3
, z3 = v1

v2
.

The measuredµu for theN = 3 harmonic space i
the Haar measure for the cosetSU(3)/U(1) × U(1).
We compute it as follows. There are 18 real matrix
ements for a general 3× 3 complex matrix, which we
denote by the column vectors(ui, vi ,wi) (i = 1,2,3)
and their complex conjugates. The orthormality re
tions yield 9 real constraints. They allow one to e
presswi in terms ofui andvi aswi = εijk ū

j v̄k up to
a phase which will drop out. One is left with the 6 re
z variables in(4.4)and three angles. One of these a
gles is fixed by the requirement that the determin
be unity, while the two remaining angles parametr
the subgroupU(1) × U(1).
As suggested by this enumeration, we use
following set of 18 integration variables

z1 = u1

u3
, z2 = u2

u3
, z3 = v1

v3
, z4 = v3

v2
,

|u3|2, ū3

u3
, |v2|2, v̄2

v2
,

(4.5)w1, w̄1, w2, w̄2, |w3|2, w̄3

w3

and the conjugates ofz’s.
The integration over the delta functions which e

force the othornormality relations yields unity. Nam
ly,

(1)
∫

dw1 dw̄1 δ(wi ū
i) yields|u1|−2,

(2)
∫

dw2 dw̄2 δ(wi v̄
i ) yields|u1|2/|w3|2,

(3)
∫

d|w3|2 δ(|w|2 − 1) yields [1 + |w1/w3|2 +
|w2/w3|2].

The product of these contributions is unity.

(4)
∫

d|u3|2 δ(|u|2 − 1) yields |u3|−2 = (1 + |z1|2 +
|z2|2),

(5)
∫

d|v2|2 δ(|v|2 − 1) gives |v2|−2 = 1 + |z3|2 +
|z2 + z1z̄3|2,

(6)
∫

dz4 dz̄4 δ(u · v̄) cancels the previous two contr
butions becauseu · v̄ = u3v̄

2(z1z̄
3 + z2 + z̄4).

One thus only obtains a contribution of the Ja
bian. The evaluation of a 18× 18 Jacobian may seem
daunting, but most terms vanish, and one easily der
by hand

J = ∣∣u2
3u3ū

3v2
2v2v̄

2
∣∣

(4.6)

= 1

(1+ |z1|2 + |z2|2)2(1+ |z3|2 + |z2 + z1z̄3|2)2 .

This yields Haar measure forSU(3)/U(1) × U(1)

and agrees with[22] except for the power in th
denominator

(4.7)

dµu =
∏3

i=1 dzi dz̄i

(1+ |z1|2 + |z2|2)2(1+ |z3|2 + |z2 + z1z̄3|2)2
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6)
To conclude, the action forN = 3 SYM in har-
monic superspace is given by

(4.8)

S =
∫

dξ3
1 dξ2

1 dξ3
2 d4xA d2θ(0,1)

× d2θ(1,−1) d2θ̄ (1,0) d2θ̄ (−1,1) dµu

×
(

Φ
(1)
H QHΦ

(1)
H + 2

3
Φ

(1)
H � Φ

(1)
H � Φ

(1)
H

)
,

whereΦ
(1)
H is given by the right hand side of(3.16)

andS coincides with the action given in[5] after the
integration over the ghost fieldsξ ’s is performed.

Acknowledgements

We thank N. Berkovits, M. Porrati, G. Policastr
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