11,278 research outputs found

    Exponential localization in one-dimensional quasiperiodic optical lattices

    Full text link
    We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre' model, and provide evidences on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on Anderson localization of a noninteracting Bose-Einstein condensate in a quasiperiodic optical lattice [G. Roati et al., Nature 453, 895 (2008)].Comment: 13 pages, 6 figure

    Local dissipation effects in two-dimensional quantum Josephson junction arrays with magnetic field

    Full text link
    We study the quantum phase transitions in two-dimensional arrays of Josephson-couples junctions with short range Josephson couplings (given by the Josephson energy) and the charging energy. We map the problem onto the solvable quantum generalization of the spherical model that improves over the mean-field theory method. The arrays are placed on the top of a two-dimensional electron gas separated by an insulator. We include effects of the local dissipation in the presence of an external magnetic flux f in square lattice for several rational fluxes f=0,1/2,1/3,1/4 and 1/6. We also have examined the T=0 superconducting-insulator phase boundary as function of a dissipation alpha for two different geometry of the lattice: square and triangular. We have found critical value of the dissipation parameter independent on geometry of the lattice and presence magnetic field.Comment: accepted to PR

    Effects of Electron Correlations on Hofstadter Spectrum

    Full text link
    By allowing interactions between electrons, a new Harper's equation is derived to examine the effects of electron correlations on the Hofstadter energy spectra. It is shown that the structure of the Hofstadter butterfly ofr the system of correlated electrons is modified only in the band gaps and the band widths, but not in the characteristics of self-similarity and the Cantor set.Comment: 13 pages, 5 Postscript figure

    A Note on Solid-State Maxwell Demon

    Full text link
    Starting from 2002, at least two kinds of laboratory-testable, solid-state Maxwell demons have been proposed that utilize the electric field energy of an open-gap n-p junction and that seem to challenge the validity of the Second Law of Thermodynamics. In the present paper we present some arguments against the alleged functioning of such devices.Comment: 9 pages, 4 figures. Foundations of Physics, forthcoming. arXiv admin note: substantial text overlap with arXiv:1101.505

    Magnetic Field Effect on the Pseudogap Temperature within Precursor Superconductivity

    Full text link
    We determine the magnetic field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic attractive Hubbard model account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.Comment: 4 pages, 3 figure

    Ground-simulation investigations of VTOL airworthiness criteria for terminal-area operations

    Get PDF
    Several ground-based simulation experiments undertaken to investigate concerns related to tilt-rotor aircraft airworthiness were conducted. The experiments were conducted on the National Aeronautics and Space Administration (NASA) Ames Research Center's Vertical Motion Simulator, which permits simulation of a wide variety of aircraft with a high degree of fidelity of motion cueing. Variations in conversion/deceleration profile, type of augmentation or automation, level of display assistance, and meteorological conditions were considered in the course of the experiments. Certification pilots from the Federal Aviation Administration (FAA) and the Civil Aviation Authority (CAA) participated, in addition to NASA research pilots. The setup of these experiments on the simulator is summarized, and some of the results highlighted

    Dealing with mobility: Understanding access anytime, anywhere

    Get PDF
    The rapid and accelerating move towards the adoption and use of mobile technologies has increasingly provided people and organisations with the ability to work away from the office and on the move. The new ways of working afforded by these technologies are often characterised in terms of access to information and people ‘anytime, anywhere’. This paper presents a study of mobile workers that highlights different facets of access to remote people and information, and different facets of anytime, anywhere. Four key factors in mobile work are identified from the study: the role of planning, working in ‘dead time’, accessing remote technological and informational resources, and monitoring the activities of remote colleagues. By reflecting on these issues, we can better understand the role of technology and artefact use in mobile work and identify the opportunities for the development of appropriate technological solutions to support mobile workers

    Gauge fields for ultracold atoms in optical superlattices

    Full text link
    We present a scheme that produces a strong U(1)-like gauge field on cold atoms confined in a two-dimensional square optical lattice. Our proposal relies on two essential features, a long-lived metastable excited state that exists for alkaline-earth or Ytterbium atoms, and an optical superlattice. As in the proposal by Jaksch and Zoller [New Journal of Physics 5, 56 (2003)], laser-assisted tunneling between adjacent sites creates an effective magnetic field. In the tight-binding approximation, the atomic motion is described by the Harper Hamiltonian, with a flux across each lattice plaquette that can realistically take any value between 0 and π\pi. We show how to take advantage of the superlattice to ensure that each plaquette acquires the same phase, thus simulating a uniform magnetic field. We discuss the observable consequences of the artificial gauge field on non-interacting bosonic and fermionic gases. We also outline how the scheme can be generalized to non-Abelian gauge fields
    corecore