29 research outputs found

    Influenza A Virus Coding Regions Exhibit Host-Specific Global Ordered RNA Structure

    Get PDF
    Influenza A is a significant public health threat, partially because of its capacity to readily exchange gene segments between different host species to form novel pandemic strains. An understanding of the fundamental factors providing species barriers between different influenza hosts would facilitate identification of strains capable of leading to pandemic outbreaks and could also inform vaccine development. Here, we describe the difference in predicted RNA secondary structure stability that exists between avian, swine and human coding regions. The results predict that global ordered RNA structure exists in influenza A segments 1, 5, 7 and 8, and that ranges of free energies for secondary structure formation differ between host strains. The predicted free energy distributions for strains from avian, swine, and human species suggest criteria for segment reassortment and strains that might be ideal candidates for viral attenuation and vaccine development

    The 3â€Č Splice Site of Influenza A Segment 7 mRNA Can Exist in Two Conformations: A Pseudoknot and a Hairpin

    Get PDF
    The 3â€Č splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3â€Č splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site

    The ancient history of the structure of ribonuclease P and the early origins of Archaea

    Get PDF
    corecore