138 research outputs found
A Bohr's Semiclassical Model of the Black Hole Thermodynamics
We propose a simple procedure for evaluating the main thermodynamical
attributes of a Schwarzschild's black hole: Bekenstein-Hawking entropy,
Hawking's temperature and Bekenstein's quantization of the surface area. We
make use of the condition that the circumference of a great circle on the black
hole horizon contains finite number of the corresponding reduced Compton's
wavelength. It is essentially analogous to Bohr's quantization postulate in
Bohr's atomic model interpreted by de Broglie's relation. We present black hole
radiation in the form conceptually analogous to Bohr's postulate on the photon
emission by discrete quantum jump of the electron within the Old quantum
theory. It enables us, in accordance with Heisenberg's uncertainty relation and
Bohr's correspondence principle, to make a rough estimate of the time interval
for black hole evaporation, which turns out very close to time interval
predicted by the standard Hawking's theory. Our calculations confirm
Bekenstein's semiclassical result for the energy quantization, in variance with
Frasca's (2005) calculations. Finally we speculate about the possible
source-energy distribution within the black hole horizon.Comment: no figure
Threshold detachment of negative ions by electron impact
The description of threshold fragmentation under long range repulsive forces
is presented. The dominant energy dependence near threshold is isolated by
decomposing the cross section into a product of a back ground part and a
barrier penetration probability resulting from the repulsive Coulomb
interaction. This tunneling probability contains the dominant energy variation
and it can be calculated analytically based on the same principles as Wannier's
description for threshold ionization under attractive forces. Good agreement is
found with the available experimental cross sections on detachment by electron
impact from , and .Comment: 4 pages, 4 figures (EPS), to appear in Phys.Rev.Lett, Feb. 22nd, 199
Expression of Human α2-Adrenergic Receptors in Adipose Tissue of β3-Adrenergic Receptor-deficient Mice Promotes Diet-induced Obesity
Catecholamines play an important role in controlling white adipose tissue function and development. β- and α2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte α2/β-AR balance in obesity, and it has been proposed that increased α2-ARs in adipose tissue with or without decreased β-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte α2/β-AR balance was genetically manipulated in mice. Human α2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (−/−) or heterozygous (+/−) for a disrupted β3-AR allele. Mice expressing α2-ARs in fat, in the absence of β3-ARs (β3-AR −/− background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of α2-ARs, the absence of β3-ARs, and a high fat diet. Of note, obese α2-transgenic, β3 −/− mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased α2/β-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (α2 and β3-AR) and diet interact to influence fat mass
A highly stable atomic vector magnetometer based on free spin precession
We present a magnetometer based on optically pumped Cs atoms that measures
the magnitude and direction of a 1 T magnetic field. Multiple circularly
polarized laser beams were used to probe the free spin precession of the Cs
atoms. The design was optimized for long-time stability and achieves a scalar
resolution better than 300 fT for integration times ranging from 80 ms to 1000
s. The best scalar resolution of less than 80 fT was reached with integration
times of 1.6 to 6 s. We were able to measure the magnetic field direction with
a resolution better than 10 rad for integration times from 10 s up to 2000
s
Constraining interactions mediated by axion-like particles with ultracold neutrons
We report a new limit on a possible short range spin-dependent interaction
from the precise measurement of the ratio of Larmor precession frequencies of
stored ultracold neutrons and Hg atoms confined in the same volume. The
measurement was performed in a 1 T vertical magnetic holding field
with the apparatus searching for a permanent electric dipole moment of the
neutron at the Paul Scherrer Institute. A possible coupling between freely
precessing polarized neutron spins and unpolarized nucleons of the wall
material can be investigated by searching for a tiny change of the precession
frequencies of neutron and mercury spins. Such a frequency change can be
interpreted as a consequence of a short range spin-dependent interaction that
could possibly be mediated by axions or axion-like particles. The interaction
strength is proportional to the CP violating product of scalar and pseudoscalar
coupling constants . Our result confirms limits from complementary
experiments with spin-polarized nuclei in a model-independent way. Limits from
other neutron experiments are improved by up to two orders of magnitude in the
interaction range of m
A measurement of the neutron to 199Hg magnetic moment ratio
The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30)γn/γHg=3.8424574(30)
Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10−3 Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils
The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements.
We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 μT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz
- …