270 research outputs found

    VIS/NIR spectra and color parameters according to leaf age of some Eucalyptus species: influence on their classification and discrimination

    Get PDF
    Aim of study: The aim of this study was to verify the differences in VIS/NIR spectra and leaf color parameters of leaves of Eucalyptus badjensis, E. benthamii, E. dunnii, E. grandis, E. globulus and E. saligna, at four ages, and their influence on species discrimination. Area of study: São Mateus do Sul, Paraná, Brazil. Materials and methods: Seedlings of the six species, with four replicates for each, were acclimatized in the same environment, in Oc-tober 2015, in an entirely randomized design. Leaf samples were collected from plants that were 6, 8, 10 and 12 months old. Three leaves from each of four plants at each age were analyzed. Five parameters were recorded referring to the adaxial surface of each leaf, with a total of 15 records from repetitions and 60 per species at each age. The evaluation was performed in the spectral ranges from 360-740 nm (VIS) and 1000-2500 nm (NIR). Principal component analysis and linear discriminant analysis were performed. Main results: The influence of age differed within each species. In color data, the parameter with most variation among all samples was chromatic coordinate b*. In reflectance spectra (VIS), age of 12 months provided the best discrimination of species. Second derivative NIR spectra produced the best results of external prediction of Linear Discriminant Analysis models based on leaves of 12-month-old trees. Research highlights: Observation of color parameters and VIS/NIR spectroscopy have potential utility for discrimination of Eucalyptus species based on their green leaves

    Microscopic formulation of the Zimm-Bragg model for the helix-coil transition

    Get PDF
    A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent literature.Comment: 11 pages, 2 figure

    Características físico-químicas de meis produzidos por espécies de meliponíneos.

    Get PDF
    Além da abelhas Africanizadas (Apis mellifera L.), as abelhas indígenas sem ferrão ou meliponíneos (Meliponinae) são potenciais produtoras de mel. Esse produto apresenta carcterísticas distintas do mel produzido pelas abelhas do gênero Apis, sendo muito apreciado pelos consumidores. Entretanto, são escassos os dados científicos a respeito da composição desse mel na literatura nacional e internacional. A proposta deste trabalho é avaliar as características físico-químicas do mel produzido por meliponíneos. As análises físico-químico foram realizadas de acordo com as técnicas descritas pela AOAC (Association of Official Analytical Chemists), e pela European Honey Comission, conforme recomendado pela CAC (Codex Alimentarius Comission). Os resultados obtidos reforçam a necessidade do desenvolvimento de um padrão próprio para os méis de abelhas sem ferrão, incluindo critérios microbiológicos.Disponível também em: Cadernos de Agroecologia, V. 5, n.1, 2010

    Elasticity of Gaussian and nearly-Gaussian phantom networks

    Full text link
    We study the elastic properties of phantom networks of Gaussian and nearly-Gaussian springs. We show that the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks of nearly-Gaussian springs have a power low dependence on the distance of the system from the percolation threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur

    Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime

    Get PDF
    Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and are in keeping with recent observations. A simple, perturbative analysis shows that high field regions with a sharp variation in permittivity can potentially be critical spots for instability initiation. This suggests that the use of polished electrodes, or composite materials, or alternative nonpolar liquids might help enhance high-voltage operation

    Schinus molle: anatomy of leaves and stems, chemical composition and insecticidal activities of volatile oil against bed bug (Cimex lectularius)

    Get PDF
    © 2019 by the authors The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-40, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was \u3e500-fold selective against MAO-B over MAO-A as compared to only two-fold selectivity shown by acacetin. Even though the IC50 for inhibition of MAO-B by acacetin 7-methyl ether was ~four-fold higher than that of the standard drug deprenyl (i.e., SelegilineTM or ZelaparTM, a selective MAO-B inhibitor), acacetin 7-methyl ether’s selectivity for MAO-B over MAO-A inhibition was greater than that of deprenyl (\u3e500- vs. 450-fold). The binding of acacetin 7-methyl ether to MAO-B was reversible and time-independent, as revealed by enzyme-inhibitor complex equilibrium dialysis assays. The investigation on the enzyme inhibition-kinetics analysis with varying concentrations of acacetin 7-methyl ether and the substrate (kynuramine) suggested a competitive mechanism of inhibition of MAO-B by acacetin 7-methyl ether with Ki value of 45 nM. The docking scores and binding-free energies of acacetin 7-methyl ether to the X-ray crystal structures of MAO-A and MAO-B confirmed the selectivity of binding of this molecule to MAO-B over MAO-A. In addition, molecular dynamics results also revealed that acacetin 7-methyl ether formed a stable and strong complex with MAO-B. The selective inhibition of MAO-B suggests further investigations on acacetin 7-methyl as a potential new drug lead for the treatment of neurodegenerative disorders, including Parkinson’s disease

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    Thermodynamic formalism for systems with Markov dynamics

    Full text link
    The thermodynamic formalism allows one to access the chaotic properties of equilibrium and out-of-equilibrium systems, by deriving those from a dynamical partition function. The definition that has been given for this partition function within the framework of discrete time Markov chains was not suitable for continuous time Markov dynamics. Here we propose another interpretation of the definition that allows us to apply the thermodynamic formalism to continuous time. We also generalize the formalism --a dynamical Gibbs ensemble construction-- to a whole family of observables and their associated large deviation functions. This allows us to make the connection between the thermodynamic formalism and the observable involved in the much-studied fluctuation theorem. We illustrate our approach on various physical systems: random walks, exclusion processes, an Ising model and the contact process. In the latter cases, we identify a signature of the occurrence of dynamical phase transitions. We show that this signature can already be unravelled using the simplest dynamical ensemble one could define, based on the number of configuration changes a system has undergone over an asymptotically large time window.Comment: 64 pages, LaTeX; version accepted for publication in Journal of Statistical Physic
    corecore