112 research outputs found

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    West Nile virus encodes a microRNA-like small RNA in the 3β€² untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells

    Get PDF
    West Nile virus (WNV) belongs to a group of medically important single-stranded, positive-sense RNA viruses causing deadly disease outbreaks around the world. The 3β€² untranslated region (3β€²-UTR) of the flavivirus genome, in particular the terminal 3β€² stem–loop (3β€²SL) fulfils multiple functions in virus replication and virus–host interactions. Using the Kunjin strain of WNV (WNVKUN), we detected a virally encoded small RNA, named KUN-miR-1, derived from 3β€²SL. Transcription of WNVKUN pre-miRNA (3β€²SL) in mosquito cells either from plasmid or Semliki Forest virus (SFV) RNA replicon resulted in the production of mature KUN-miR-1. Silencing of Dicer-1 but not Dicer-2 led to a reduction in the miRNA levels. Further, when a synthetic inhibitor of KUN-miR-1 was transfected into mosquito cells, replication of viral RNA was significantly reduced. Using cloning and bioinformatics approaches, we identified the cellular GATA4 mRNA as a target for KUN-miR-1. KUN-miR-1 produced in mosquito cells during virus infection or from plasmid DNA, SFV RNA replicon or mature miRNA duplex increased accumulation of GATA4 mRNA. Depletion of GATA4 mRNA by RNA silencing led to a significant reduction in virus RNA replication while a KUN-miR-1 RNA mimic enhanced replication of a mutant WNVKUN virus producing reduced amounts of KUN-miR-1, suggesting that GATA4-induction via KUN-miR-1 plays an important role in virus replication

    The dynamics and efficacy of antiviral RNA silencing: A model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression.</p> <p>Results</p> <p>We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios.</p> <p>Conclusion</p> <p>The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.</p

    Evidence for Restriction of Ancient Primate Gammaretroviruses by APOBEC3 but Not TRIM5Ξ± Proteins

    Get PDF
    Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5Ξ± and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a β€˜fossil record’ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5Ξ± proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species–dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses

    Human Immunodeficiency Virus type 1 Endocytic Trafficking Through Macrophage Bridging Conduits Facilitates Spread of Infection

    Get PDF
    Bridging conduits (BC) sustain communication and homeostasis between distant tethered cells. These are also exploited commonly for direct cell-to-cell transfer of microbial agents. Conduits efficiently spread infection, effectively, at speeds faster than fluid phase exchange while shielding the microbe against otherwise effective humoral immunity. Our laboratory has sought to uncover the mechanism(s) for these events for human immunodeficiency virus type one (HIV-1) infection. Indeed, in our prior works HIV-1 Env and Gag antigen and fluorescent virus tracking were shown sequestered into endoplasmic reticulum-Golgi organelles but the outcomes for spreading viral infection remained poorly defined. Herein, we show that HIV-1 specifically traffics through endocytic compartments contained within BC and directing such macrophage-to-macrophage viral transfers. Following clathrin-dependent viral entry, HIV-1 constituents bypass degradation by differential sorting from early to Rab11+ recycling endosomes and multivesicular bodies. Virus-containing endocytic viral cargoes propelled by myosin II through BC spread to neighboring uninfected cells. Disruption of endosomal motility with cytochalasin D, nocodasole and blebbistatin diminish intercellular viral spread. These data lead us to propose that HIV-1 hijacks macrophage endocytic and cytoskeletal machineries for high-speed cell-to-cell spread

    Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein.</p> <p>Results</p> <p>Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain.</p> <p>Conclusions</p> <p>This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.</p

    IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

    Get PDF
    To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats

    Demonstration of a Novel HIV-1 Restriction Phenotype from a Human T Cell Line

    Get PDF
    Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR) that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s). Further characterization of this novel gene product(s) will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1

    C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

    Get PDF
    Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level
    • …
    corecore