35 research outputs found

    Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning

    Get PDF
    Following an array of optimization experiments, two series of electrospun polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers contained various loadings of indomethacin, known to form stable glasses, and the other griseofulvin (a poor glass former). Drug loadings of up to 33% w/w were achieved. Electron microscopy data showed the fibers largely to comprise smooth and uniform cylinders, with evidence for solvent droplets in some samples. In all cases, the drug was found to exist in the amorphous physical state in the fibers on the basis of X-ray diffraction and differential scanning calorimetry (DSC) measurements. Modulated temperature DSC showed that the relationship between a formulation’s glass transition temperature (<i>T</i><sub>g</sub>) and the drug loading follows the Gordon–Taylor equation, but not the Fox equation. The results of Gordon–Taylor analysis indicated that the drug/polymer interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug

    Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    No full text
    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite
    corecore