231 research outputs found
Volcanism by melt-driven Rayleigh-Taylor instabilities and possible consequences of melting for admittance ratios on Venus
A large number of volcanic features exist on Venus, ranging from tens of thousands of small domes to large shields and coronae. It is difficult to reconcile all these with an explanation involving deep mantle plumes, since a number of separate arguments lead to the conclusion that deep mantle plumes reaching the base of the lithosphere must exceed a certain size. In addition, the fraction of basal heating in Venus' mantle may be significantly lower than in Earth's mantle reducing the number of strong plumes from the core-mantle boundary. In three-dimensional convection simulations with mainly internal heating, weak, distributed upwellings are usually observed. We present an alternative mechanism for such volcanism, originally proposed for the Earth and for Venus, involving Rayleigh-Taylor instabilities driven by melt buoyancy, occurring spontaneously in partially or incipiently molten regions
The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics
We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium
Habitable Planets: Interior Dynamics and Long-Term Evolution
Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occur
Deep storage of oceanic crust in a vigorously convecting mantle
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94626/1/jgrb15203.pd
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
After accretion and formation, terrestrial planets go through at least one magma ocean episode. As the magma ocean crystallises, it creates the first layer of solid rocky mantle. Two different scenarios of magma ocean crystallisation involve that the solid mantle either (1) first appears at the core–mantle boundary and grows upwards or (2) appears at mid-mantle depth and grows in both directions. Regardless of the magma ocean freezing scenario, the composition of the solid mantle and liquid reservoirs continuously change due to fractional crystallisation. This chemical fractionation has important implications for the long-term thermo-chemical evolution of the mantle as well as its present-day dynamics and composition. In this work, we use numerical models to study convection in a solid mantle bounded at one or both boundaries by magma ocean(s) and, in particular, the related consequences for large-scale chemical fractionation. We use a parameterisation of fractional crystallisation of the magma ocean(s) and (re)melting of solid material at the interface between these reservoirs. When these crystallisation and remelting processes are taken into account, convection in the solid mantle occurs readily and is dominated by large wavelengths. Related material transfer across the mantle–magma ocean boundaries promotes chemical equilibrium and prevents extreme enrichment of the last-stage magma ocean (as would otherwise occur due to pure fractional crystallisation). The timescale of equilibration depends on the convective vigour of mantle convection and on the efficiency of material transfer between the solid mantle and magma ocean(s). For Earth, this timescale is comparable to that of magma ocean crystallisation suggested in previous studies (Lebrun et al., 2013), which may explain why the Earth's mantle is rather homogeneous in composition, as supported by geophysical constraints
Methods for thermochemical convection in Earth's mantle with force‐balanced plates
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94785/1/ggge1131.pd
The subduction dichotomy of strong plates and weak slabs
A key element of plate tectonics on Earth is that the lithosphere is
subducting into the mantle. Subduction results from forces that bend and pull
the lithosphere into the interior of the Earth. Once subducted, lithospheric
slabs are further modified by dynamic forces in the mantle, and their sinking
is inhibited by the increase in viscosity of the lower mantle. These forces
are resisted by the material strength of the lithosphere. Using geodynamic
models, we investigate several subduction models, wherein we control material
strength by setting a maximum viscosity for the surface plates and the
subducted slabs independently. We find that models characterized by a
dichotomy of lithosphere strengths produce a spectrum of results that are
comparable to interpretations of observations of subduction on Earth. These
models have strong lithospheric plates at the surface, which promotes
Earth-like single-sided subduction. At the same time, these models have
weakened lithospheric subducted slabs which can more easily bend to either
lie flat or fold into a slab pile atop the lower mantle, reproducing the
spectrum of slab morphologies that have been interpreted from images of
seismic tomography
Super-Earths: A New Class of Planetary Bodies
Super-Earths, a class of planetary bodies with masses ranging from a few
Earth-masses to slightly smaller than Uranus, have recently found a special
place in the exoplanetary science. Being slightly larger than a typical
terrestrial planet, super-Earths may have physical and dynamical
characteristics similar to those of Earth whereas unlike terrestrial planets,
they are relatively easier to detect. Because of their sizes, super-Earths can
maintain moderate atmospheres and possibly dynamic interiors with plate
tectonics. They also seem to be more common around low-mass stars where the
habitable zone is in closer distances. This article presents a review of the
current state of research on super-Earths, and discusses the models of the
formation, dynamical evolution, and possible habitability of these objects.
Given the recent advances in detection techniques, the detectability of
super-Earths is also discussed, and a review of the prospects of their
detection in the habitable zones of low-mass stars is presented.Comment: A (non-technical) review of the literature on the current state
ofresearch on super-Earths. The topics include observation, formation,
dynamical evolution, habitability, composition, interior dynamics, magnetic
field, atmosphere, and propsect of detection. The article has 44 pages, 27
figures, and 203 references. It has been accepted for publication in the
journal Contemporary Physics (2011
- …