577 research outputs found

    Comparison of automated infarct core volume measures between non-contrast computed tomography and perfusion imaging in acute stroke code patients evaluated for potential endovascular treatment

    Get PDF
    Introduction: Patients with small core infarction and salvageable penumbra are likely to benefit from endovascular treatment (EVT). As computed tomography perfusion imaging (CTP) is not always available 24/7 for patient selection, many patients are transferred to stroke centers for CTP. We compared automatically measured infarct core volume (NCCTcore) from the non-contrast computed tomography (NCCT) with ischemic core volume (CTPcore) from CTP and the outcome of EVT to clarify if NCCTcore measurement alone is sufficient to identify patients that benefit from transfer to stroke centers for EVT. Patients and methods: We included all consecutive stroke-code patients imaged with both NCCT and CTP at Helsinki University Hospital during 9/2016-01/2018. NCCTcore and CTPcore volumes were automatically calculated from the acute NCCT images. Follow-up infarct volume (FIV) was measured from 24 h follow-up NCCT to evaluate efficacy of EVT. To study whether NCCTcore could be used to identify patients eligible to EVT, we subgrouped patients based on NCCTcore volumes (>50 mL and > 70 mL). Results: Out of 1743 patients, baseline NCCTcore, CTPcore and follow-up NCCT was available for 288 patients. Median time from symptom onset to baseline imaging was 74 min (IQR 52-118), and time to follow-up imaging 24.15 h (22.25-26.33). Baseline NCCTcore was 20 mL (10-42), CTPcore 4 mL (0-16), and FIV 5 mL (1-49). Out of 288 patients, 23 had NCCTcore > 70 mL and 26 had CTPcore > 70 mL. NCCTcore and CTPcore performed similarly well in predicting large FIV (>70 ml). Conclusion: NCCTcore is a promising tool to identify patients that are not eligible to EVT due to large ischemic cores at baseline imaging.Peer reviewe

    Is infarct core growth linear? Infarct volume estimation by computed tomography perfusion imaging

    Get PDF
    Objectives Current guidelines for recanalization treatment are based on the time elapsed between symptom onset and treatment and visualization of existing penumbra in computed tomography perfusion (CTP) imaging. The time window for treatment options relies on linear growth of infarction although individual infarct growth rate may vary. We aimed to test how accurately the estimated follow-up infarct volume (eFIV) can be approximated by using a linear growth model based on CTP baseline imaging. If eFIV did not fall within the margins of +/- 19% of the follow-up infarct volume (FIV) measured at 24 h from non-enhanced computed tomography images, the results would imply that the infarct growth is not linear. Materials and Methods All consecutive endovascularly treated (EVT) patients from 11/2015 to 9/2019 at the Helsinki University Hospital with large vessel occlusion (LVO), CTP imaging, and known time of symptom onset were included. Infarct growth rate was assumed to be linear and calculated by dividing the ischemic core volume (CTPcore) by the time from symptom onset to baseline imaging. eFIV was calculated by multiplying the infarct growth rate with the time from baseline imaging to recanalization or in case of futile recanalization to follow-up imaging at 24 h, limited to the penumbra. Collateral flow was estimated by calculating hypoperfusion intensity ratio (HIR). Results Of 5234 patients, 48 had LVO, EVT, CTP imaging, and known time of symptom onset. In 40/48 patients (87%), infarct growth was not linear. HIR did not differ between patients with linear and nonlinear growth (p > .05). As expected, in over half of the patients with successful recanalization eFIV exceeded FIV. Conclusions Infarct growth was not linear in most patients and thus time elapsed from symptom onset and CTPcore appear to be insufficient parameters for clinical decision-making in EVT candidates.Peer reviewe

    Augmenting Immersive Telepresence Experience with a Virtual Body

    Full text link
    We propose augmenting immersive telepresence by adding a virtual body, representing the user's own arm motions, as realized through a head-mounted display and a 360-degree camera. Previous research has shown the effectiveness of having a virtual body in simulated environments; however, research on whether seeing one's own virtual arms increases presence or preference for the user in an immersive telepresence setup is limited. We conducted a study where a host introduced a research lab while participants wore a head-mounted display which allowed them to be telepresent at the host's physical location via a 360-degree camera, either with or without a virtual body. We first conducted a pilot study of 20 participants, followed by a pre-registered 62 participant confirmatory study. Whereas the pilot study showed greater presence and preference when the virtual body was present, the confirmatory study failed to replicate these results, with only behavioral measures suggesting an increase in presence. After analyzing the qualitative data and modeling interactions, we suspect that the quality and style of the virtual arms, and the contrast between animation and video, led to individual differences in reactions to the virtual body which subsequently moderated feelings of presence.Comment: Accepted for publication in Transactions in Visualization and Computer Graphics (TVCG), to be presented in IEEE VR 202

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling

    Get PDF
    mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function.Peer reviewe

    Mouse Studies to Shape Clinical Trials for Mitochondrial Diseases: High Fat Diet in Harlequin Mice

    Get PDF
    BACKGROUND: Therapeutic options in human mitochondrial oxidative phosphorylation (OXPHOS) diseases have been poorly evaluated mostly because of the scarcity of cohorts and the inter-individual variability of disease progression. Thus, while a high fat diet (HFD) is often recommended, data regarding efficacy are limited. Our objectives were 1) to determine our ability to evaluate therapeutic options in the Harlequin OXPHOS complex I (CI)-deficient mice, in the context of a mitochondrial disease with human hallmarks and 2) to assess the effects of a HFD. METHODS AND FINDINGS: Before launching long and expensive animal studies, we showed that palmitate afforded long-term death-protection in 3 CI-mutant human fibroblasts cell lines. We next demonstrated that using the Harlequin mouse, it was possible to draw solid conclusions on the efficacy of a 5-month-HFD on neurodegenerative symptoms. Moreover, we could identify a group of highly responsive animals, echoing the high variability of the disease progression in Harlequin mice. CONCLUSIONS: These results suggest that a reduced number of patients with identical genetic disease should be sufficient to reach firm conclusions as far as the potential existence of responders and non responders is recognized. They also positively prefigure HFD-trials in OXPHOS-deficient patients

    Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored

    Neuronal intranuclear inclusion disease is genetically heterogeneous

    Get PDF
    Neuronal intranuclear inclusion disease (NIID) is a clinically heterogeneous neurodegenerative condition characterized by pathological intranuclear eosinophilic inclusions. A CGG repeat expansion in NOTCH2NLC was recently identified to be associated with NIID in patients of Japanese descent. We screened pathologically confirmed European NIID, cases of neurodegenerative disease with intranuclear inclusions and applied in silico-based screening using whole-genome sequencing data from 20 536 participants in the 100 000 Genomes Project. We identified a single European case harbouring the pathogenic repeat expansion with a distinct haplotype structure. Thus, we propose new diagnostic criteria as European NIID represents a distinct disease entity from East Asian cases

    Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

    Get PDF
    Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation. Unlike human teeth, mouse incisors grow throughout life, based on stem and progenitor cell activity. Here the authors generate single cell RNA-seq comparative maps of continuously-growing mouse incisor, non-growing mouse molar and human teeth, combined with lineage tracing to reveal dental cell complexity.Peer reviewe
    • …
    corecore