146 research outputs found
Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection
The inflammatory response to lung infections must be tightly regulated, enabling pathogen elimination while maintaining crucial gas exchange. Using recently described âdepletion of regulatory T cellâ (DEREG) mice, we found that selective depletion of regulatory T cells (Tregs) during acute respiratory syncytial virus (RSV) infection enhanced viral clearance but increased weight loss, local cytokine and chemokine release, and T-cell activation and cellular influx into the lungs. Conversely, inflammation was decreased when Treg numbers and activity were boosted using interleukin-2 immune complexes. Unexpectedly, lung (but not draining lymph node) Tregs from RSV-infected mice expressed granzyme B (GzmB), and bone marrow chimeric mice with selective loss of GzmB in the Treg compartment displayed markedly enhanced cellular infiltration into the lung after infection. A crucial role for GzmB-expressing Tregs has not hitherto been described in the lung or during acute infections, but may explain the inability of children with perforin/GzmB defects to regulate immune responses to infection. The effects of RSV infection in mice with defective immune regulation closely parallel the observed effects of RSV in children with bronchiolitis, suggesting that the pathogenesis of bronchiolitis may involve an inability to regulate virus-induced inflammation
CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo
Background Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-alpha) and interleukin-1beta (IL-1beta). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo. Methods Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured. Results In WT mice, CpG-ODN induced a strong activation of pulmonary NFKB as well as a significant increase in pulmonary TNF-alpha and IL-1beta mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice. Conclusion This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9
Assessment of a novel smartglass-based point-of-care fusion approach for mixed reality-assisted targeted prostate biopsy: A pilot proof-of-concept study
PurposeWhile several biopsy techniques and platforms for magnetic resonance imaging (MRI)-guided targeted biopsy of the prostate have been established, none of them has proven definite superiority. Augmented and virtual reality (mixed reality) smartglasses have emerged as an innovative technology to support image-guidance and optimize accuracy during medical interventions. We aimed to investigate the benefits of smartglasses for MRI-guided mixed reality-assisted cognitive targeted biopsy of the prostate.MethodsFor prospectively collected patients with suspect prostate PIRADS lesions, multiparametric MRI was uploaded to a smartglass (MicrosoftÂź Hololens I), and smartglass-assisted targeted biopsy (SMART TB) of the prostate was executed by generation of a cognitive fusion technology at the point-of-care. Detection rates of prostate cancer (PCA) were compared between SMART TB and 12-core systematic biopsy. Assessment of SMART-TB was executed by the two performing surgeons based on 10 domains on a 10-point scale ranging from bad (1) to excellent (10).ResultsSMART TB and systematic biopsy of the prostate were performed for 10 patients with a total of 17 suspect PIRADS lesions (PIRADS 3, nâ=â6; PIRADS 4, nâ=â6; PIRADS 5, nâ=â5). PCA detection rate per core was significant (pâ<â0.05) higher for SMART TB (47%) than for systematic biopsy (19%). Likelihood for PCA according to each core of a PIRADS lesion (17%, PIRADS 3; 58%, PIRADS 4; 67%, PIRADS 5) demonstrated convenient accuracy. Feasibility scores for SMART TB were high for practicality (10), multitasking (10), execution speed (9), comfort (8), improvement of surgery (8) and image quality (8), medium for physical stress (6) and device handling (6) and low for device weight (5) and battery autonomy (4).ConclusionSMART TB has the potential to increase accuracy for PCA detection and might enhance cognitive MRI-guided targeted prostate biopsy in the future
Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response
Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG) motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides (CpG-ODN) are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 ÎŒM) or control ODN without CpG motif. Bronchoalveolar lavage (BAL) fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF)-ÎșB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 ÎŒM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 ÎŒM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-ÎșB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered
Human lung cancer cells express functionally active Toll-like receptor 9
BACKGROUND: CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology. METHODS: The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system. RESULTS: We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis. CONCLUSIONS: Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology
Schistosomes Induce Regulatory Features in Human and Mouse CD1dhi B Cells: Inhibition of Allergic Inflammation by IL-10 and Regulatory T Cells
Chronic helminth infections, such as schistosomes, are negatively associated with allergic disorders. Here, using B cell IL-10-deficient mice, Schistosoma mansoni-mediated protection against experimental ovalbumin-induced allergic airway inflammation (AAI) was shown to be specifically dependent on IL-10-producing B cells. To study the organs involved, we transferred B cells from lungs, mesenteric lymph nodes or spleen of OVA-infected mice to recipient OVA-sensitized mice, and showed that both lung and splenic B cells reduced AAI, but only splenic B cells in an IL-10-dependent manner. Although splenic B cell protection was accompanied by elevated levels of pulmonary FoxP3+ regulatory T cells, in vivo ablation of FoxP3+ T cells only moderately restored AAI, indicating an important role for the direct suppressory effect of regulatory B cells. Splenic marginal zone CD1d+ B cells proved to be the responsible splenic B cell subset as they produced high levels of IL-10 and induced FoxP3+ T cells in vitro. Indeed, transfer of CD1d+ MZ-depleted splenic B cells from infected mice restored AAI. Markedly, we found a similarly elevated population of CD1dhi B cells in peripheral blood of Schistosoma haematobium-infected Gabonese children compared to uninfected children and these cells produced elevated levels of IL-10. Importantly, the number of IL-10-producing CD1dhi B cells was reduced after anti-schistosome treatment. This study points out that in both mice and men schistosomes have the capacity to drive the development of IL-10-producing regulatory CD1dhi B cells and furthermore, these are instrumental in reducing experimental allergic inflammation in mice
The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3(+) Regulatory T Cells
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of T-reg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient T-reg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.</p
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-Îł. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency
- âŠ