1,130 research outputs found

    Joint constraints on galaxy bias and σ8\sigma_8 through the N-pdf of the galaxy number density

    Get PDF
    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ8\sigma_8). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes Mr≤−20M_r \leq -20). We obtain b^=1.193±0.074\hat{b} = 1.193 \pm 0.074 and σ8^=0.862±0.080\hat{\sigma_8} = 0.862 \pm 0.080, for galaxy number density fluctuations in cells of a size of 30h−130h^{-1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.Comment: 25 pages, 9 figures, 2 tables. v2: Substantial revision, adding the joint constraints with \sigma_8 and testing with Las Damas mocks. Matches version accepted for publication in JCA

    Shell-like structures in our cosmic neighbourhood

    Full text link
    Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution to other galaxy groups and clusters at the distance of about 120 Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at the distance of about 120 Mpc/h among our rich cluster sample, and another maximum at the distance of about 240 Mpc/h. The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost complete shell of galaxy groups, clusters and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster and the Ursa Major supercluster are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a BAO shell (approximately 109 Mpc/h versus approximately 120 Mpc/h), and they are determined by very rich galaxy clusters and superclusters with high density contrast while BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres

    The supercluster--void network III. The correlation function as a geometrical statistic

    Full text link
    We investigate properties of the correlation function of clusters of galaxies using geometrical models. On small scales the correlation function depends on the shape and the size of superclusters. On large scales it describes the geometry of the distribution of superclusters. If superclusters are distributed randomly then the correlation function on large scales is featureless. If superclusters and voids have a tendency to form a regular lattice then the correlation function on large scales has quasi-regularly spaced maxima and minima of decaying amplitude; i.e., it is oscillating. The period of oscillations is equal to the step size of the grid of the lattice. We calculate the power spectrum for our models and compare the geometrical information of the correlation function with other statistics. We find that geometric properties (the regularity of the distribution of clusters on large scales) are better quantified by the correlation function. We also analyse errors in the correlation function and the power spectrum by generating random realizations of models and finding the scatter of these realizations.Comment: MNRAS LaTex style, 12 pages, 7 PostScript figures embedded, accepted by MNRA

    Persistent Magnetic Wreaths in a Rapidly Rotating Sun

    Get PDF
    When our Sun was young it rotated much more rapidly than now. Observations of young, rapidly rotating stars indicate that many possess substantial magnetic activity and strong axisymmetric magnetic fields. We conduct simulations of dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical harmonic (ASH) code to explore the complex coupling between rotation, convection and magnetism. Here we study dynamo action realized in the bulk of the convection zone for a system rotating at three times the current solar rotation rate. We find that substantial organized global-scale magnetic fields are achieved by dynamo action in this system. Striking wreaths of magnetism are built in the midst of the convection zone, coexisting with the turbulent convection. This is a surprise, for it has been widely believed that such magnetic structures should be disrupted by magnetic buoyancy or turbulent pumping. Thus, many solar dynamo theories have suggested that a tachocline of penetration and shear at the base of the convection zone is a crucial ingredient for organized dynamo action, whereas these simulations do not include such tachoclines. We examine how these persistent magnetic wreaths are maintained by dynamo processes and explore whether a classical mean-field α\alpha-effect explains the regeneration of poloidal field.Comment: 17 pages, 9 figures, 1 appendix, emulateapj format; published version of sections 3-4, 7 and appendix from arXiv:0906.240

    Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity

    Full text link
    The Hyades constitute a homogeneous sample of stars ideal for investigating the dependence of planet formation on the mass of the central star. Due to their youth, Hyades members are much more chromospherically active than stars traditionally surveyed for planets using high precision radial velocity (RV) techniques. Therefore, we have conducted a detailed investigation of whether magnetic activity of our Hyades target stars will interfere with our ability to make precise RV searches for substellar companions. We measure chromospheric activity (which we take as a proxy for magnetic activity) by computing the equivalent of the R'HK activity index from the Ca II K line. is not constant in the Hyades: we confirm that it decreases with increasing temperature in the F stars, and also find it decreases for stars cooler than mid-K. We examine correlations between simultaneously measured R'HK and RV using both a classical statistical test and a Bayesian odds ratio test. We find that there is a significant correlation between R'HK and the RV in only 5 of the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will generally not be effective in correcting the measured RV values for the effects of magnetic activity in the Hyades. We argue that this implies long timescale activity variations (of order a few years; i.e., magnetic cycles or growth and decay of plage regions) will not significantly hinder our search for planets in the Hyades if the stars are closely monitored for chromospheric activity. The trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars is generally consistent with those found in field stars in the Lick planet search data, with the notable exception of a shallower dependence of sigma'_v on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of The Astronomical Journa

    Time-independent approximations for periodically driven systems with friction

    Full text link
    The classical dynamics of a particle that is driven by a rapidly oscillating potential (with frequency ω\omega) is studied. The motion is separated into a slow part and a fast part that oscillates around the slow part. The motion of the slow part is found to be described by a time-independent equation that is derived as an expansion in orders of ω−1\omega^{-1} (in this paper terms to the order ω−3\omega^{-3} are calculated explicitly). This time-independent equation is used to calculate the attracting fixed points and their basins of attraction. The results are found to be in excellent agreement with numerical solutions of the original time-dependent problem.Comment: 5 pages, 4 figures. Revised version. Minor change
    • …
    corecore