2,034 research outputs found

    Voltage Controlled Integrator and Linear Quadrature-VCO Using MMCC

    Full text link
    A Voltage Controlled Oscillator (VCO) based on the new multiplication-mode current conveyor (MMCC) building block is presented. The oscillator is realized using a double integrator loop (DIL) where a linear frequency (fo) versus the control voltage (Vc) tuning characteristics with quadrature sinusoid signal generation in a range of 40 kHz ≤ fo≤ 700  kHz had been experimentally verified. The fo─ sensitivity is low while the frequency stability factor (Sf >>1) is high at satisfactory values of total harmonic distortion (THD ≈ 1.11%)

    Precision pointing of imaging spacecraft using gyro-based attitude reference with horizon sensor updates

    Get PDF
    Remote sensing satellites are required to meet stringent pointing and drift rate requirements for imaging operations. For achieving these pointing and stability requirements, continuous and accurate three-axis attitude information is required. Inertial sensors like gyros provide continuous attitude information with better short-term stability and less random errors. However, gyro measurements are affected by drifts. Hence over time, attitudes based on the gyro reference slowly diverge from the true attitudes. On the other hand, line-of-sight (LOS) sensors like horizon sensors provide attitude information with long-term stability. Their measurements however are affected by the presence of random instrumental errors and other systematic errors. The limitations of inertial and line-of-sight sensors are mutually exclusive. Hence, by optimal fusion of attitude information from both these sensors, it is possible to retain the advantages and overcome the limitations of both, thereby providing the precise attitude information required for control. This paper describes an improved earth-pointing scheme by fusion of the three-axis attitude information from gyros and horizon sensor roll and pitch measurements along with yaw updates from the digital sun sensor. A Kalman Filter is used to estimate the three-axis attitude by online estimation and corrections of various errors from the sensor measurements. Variations in orbit rate components are also accounted for using spacecraft position and velocity measurements from the satellite positioning system. Thus precise earth-pointing is achieved

    COMPANY CREDIBILITY: A TOOL TO TRIGGER POSITIVE CSR IMAGE IN THE CAUSE-BRAND ALLIANCE CONTEXT IN INDONESIA

    Get PDF
    Purpose of study: This research aims to analyze the mediating effect of corporate social responsibility (CSR) image in the effect of company credibility dimensions (trustworthiness and expertise) on participation intention, in the cause–brand alliance (CBA) context. Methodology: The sample design which is used is purposive sampling with the sample criteria as the stakeholders of the University of Lampung, Indonesia. Data were collected by direct interview. Multiple regression analysis is used to test the hypotheses with 160 university’s stakeholders, using purposive sampling. Result: The results show that trustworthiness and expertise have a directly positive significant effect on CSR image. However, expertise statistically has a greater positive significant effect on consumer participation intention toward the CBA than trustworthiness. This finding is contrary to the contrast-effect theoretical framework (Dean, 2003) and balance theory (Heider, 1958). Newly finding is that CSR image considered a mediating role in the effect of trustworthiness and expertise credibility on participation intention. Implications: This implies that in the context of CBA, the company’s trustworthiness and expertise can be a more useful tool to trigger the positive CSR image in encouraging the stakeholders’ perception to buy the products and services or brand of the company implementing CSR, because CBA practices are considered as a genuine social cause, not as a promotion tool. Novelty/Originality of this study: In this study, the collected data uses the cross-sectional design and the CBA context uses CBA practices implemented by agriculture, education service, beverage industry, and a bank stated-owned enterprise

    Pressure screening in the interior of primary shells in double-wall carbon nanotubes

    Full text link
    The pressure response of double-wall carbon nanotubes has been investigated by means of Raman spectroscopy up to 10 GPa. The intensity of the radial breathing modes of the outer tubes decreases rapidly but remain observable up to 9 GPa, exhibiting a behavior similar (but less pronounced) to that of single-wall carbon nanotubes, which undergo a shape distortion at higher pressures. In addition, the tangential band of the external tubes broadens and decreases in amplitude. The corresponding Raman features of the internal tubes appear to be considerably less sensitive to pressure. All findings lead to the conclusion that the outer tubes act as a protection shield for the inner tubes whereas the latter increase the structural stability of the outer tubes upon pressure application.Comment: PDF with 15 pages, 3 figures, 1 table; submitted to Physical Review

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

    Full text link
    In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.

    Electronic Structure of Carbon Nanotube Ropes

    Full text link
    We present a tight binding theory to analyze the motion of electrons between carbon nanotubes bundled into a carbon nanotube rope. The theory is developed starting from a description of the propagating Bloch waves on ideal tubes, and the effects of intertube motion are treated perturbatively in this basis. Expressions for the interwall tunneling amplitudes between states on neighboring tubes are derived which show the dependence on chiral angles and intratube crystal momenta. We find that conservation of crystal momentum along the tube direction suppresses interwall coherence in a carbon nanorope containing tubes with random chiralities. Numerical calculations are presented which indicate that electronic states in a rope are localized in the transverse direction with a coherence length corresponding to a tube diameter.Comment: 15 pages, 10 eps figure

    A special purpose silicon compiler for designing supercomputing VLSI systems

    Get PDF
    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler

    Micro-Hall Magnetometry Studies of Thermally Assisted and Pure Quantum Tunneling in Single Molecule Magnet Mn12-Acetate

    Full text link
    We have studied the crossover between thermally assisted and pure quantum tunneling in single crystals of high spin (S=10) uniaxial single molecule magnet Mn12-acetate using micro-Hall effect magnetometry. Magnetic hysteresis experiments have been used toinvestigate the energy levels that determine the magnetization reversal as a function of magnetic field and temperature. These experiments demonstrate that the crossover occurs in a narrow (~0.1 K) or broad (~1 K) temperature interval depending on the magnitude and direction of the applied field. For low external fields applied parallel to the easy axis, the energy levels that dominate the tunneling shift abruptly with temperature. In the presence of a transverse field and/or large longitudinal field these energy levels change with temperature more gradually. A comparison of our experimental results with model calculations of this crossover suggest that there are additional mechanisms that enhance the tunneling rate of low lying energy levels and broaden the crossover for small transverse fields.Comment: 5 pages, 5 figure
    • …
    corecore