151 research outputs found

    Elucidating cylindrospermopsin toxicity via synthetic analogues: An in vitro approach

    Get PDF
    © 2019 Elsevier Ltd Cylindrospermopsin (CYN) is an alkaloid biosynthesized by selected cyanobacteria, the cyto- and genotoxic properties of which have been studied extensively by in vitro and in vivo experimental models. Various studies have separately established the role of uracil, guanidine and hydroxyl groups in CYN-induced toxicity. In the present study, we have prepared five synthetic analogues that all possess a uracil group but had variations in the other functionality found in CYN. We compared the in vitro toxicity of these analogues in common carp hepatocytes by assessing oxidative stress markers, DNA fragmentation and apoptosis. All the analogues tested induced generation of reactive oxygen species, lipid peroxidation (LPO) and DNA fragmentation. However, the greatest increase in LPO and increase in caspase-3 activity, an apoptosis marker, was demonstrated by an analogue containing guanidine, hydroxyl and uracil functionalities similar to those found in CYN but lacking the complex tricyclic structure of CYN. We also report a crystal structure of an analogue lacking the hydroxyl group found in CYN which does not show intramolecular H-bonding interactions between the guanidine and the uracil functionalities. The observations made in this work supports the hypothesis that CYN toxicity is a result of an interplay between both of the uracil, hydroxyl and guanidine functional groups.This research was partially funded by the Ministry of Education and Science of Ukraine (program for support young fellows MV-1) and by the BEACON (ERDF) program and the EPSRC. Thanks are given to the EPSRC for a fellowship (DE, EP/J01821X/1), the BEACON (ERDF) program for support (PJM, DE) and to the National Mass Spectrometry Facility at Swansea.Published versio

    Importance of Intracellular pH in Determining the Uptake and Efficacy of the Weakly Basic Chemotherapeutic Drug, Doxorubicin

    Get PDF
    Low extracellular pH (pHe), that is characteristic of many tumours, tends to reduce the uptake of weakly basic drugs, such as doxorubicin, thereby conferring a degree of physiological resistance to chemotherapy. It has been assumed, from pH-partition theory, that the effect of intracellular pH (pHi) is symmetrically opposite, although this has not been tested experimentally. Doxorubicin uptake into colon HCT116 cells was measured using the drug's intrinsic fluorescence under conditions that alter pHi and pHe or pHi alone. Acutely, doxorubicin influx across the cell-membrane correlates with the trans-membrane pH-gradient (facilitated at alkaline pHe and acidic pHi). However, the protonated molecule is not completely membrane-impermeant and, therefore, overall drug uptake is less pHe-sensitive than expected from pH-partitioning. Once inside cells, doxorubicin associates with slowly-releasing nuclear binding sites. The occupancy of these sites increases with pHi, such that steady-state drug uptake can be greater with alkaline cytoplasm, in contradiction to pH-partition theory. Measurements of cell proliferation demonstrate that doxorubicin efficacy is enhanced at alkaline pHi and that pH-partition theory is inadequate to account for this. The limitations in the predictive power of pH-partition theory arise because it only accounts for the pHi/pHe-sensitivity of drug entry into cells but not the drug's subsequent interactions that, independently, show pHi-dependence. In summary, doxorubicin uptake into cells is favoured by high pHe and high pHi. This modified formalism should be taken into account when designing manoeuvres aimed at increasing doxorubicin efficacy

    Evaluation of internet access and utilization by medical students in Lahore, Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The internet is increasingly being used worldwide in imparting medical education and improving its delivery. It has become an important tool for healthcare professionals training but the data on its use by medical students in developing countries is lacking with no study on the subject from Pakistan. This study was, therefore, carried out with an aim to evaluate the pattern of internet access and utilization by medical students in Pakistan.</p> <p>Methods</p> <p>A structured pre-tested questionnaire was administered to a group of 750 medical students in clinical years studying at various public and private medical colleges in Lahore. The questions were related to patterns of internet access, purpose of use and self reported confidence in performing various internet related tasks, use of health related websites to supplement learning and the problems faced by students in using internet at the institution.</p> <p>Results</p> <p>A total of 532 medical students (70.9%) returned the questionnaire. The mean age of study participants was 21.04 years (SD 1.96 years). Majority of the respondents (84.0%) reported experience with internet use. About half of the students (42.1%) were using internet occasionally with 23.1%, 20.9% and 13.9% doing so frequently, regularly and rarely respectively. About two third of the students (61.0%) stated that they use internet for both academic and professional activities. Most of the participants preferred to use internet at home (70.5%). Self reported ability to search for required article from PubMed and PakMedinet was reported by only 34.0% of the entire sample. Students were moderately confident in performing various internet related tasks including downloading medical books from internet, searching internet for classification of diseases and downloading full text article. Health related websites were being accessed by 55.1% students to supplement their learning process. Lack of time, inadequate number of available computers and lack of support from staff were cited as the most common problems faced by students while accessing internet in the institution premises. There were significant differences among male and female students with respect to the place of internet use (p = 0.001) and the ability to search online databases for required articles (p = 0.014).</p> <p>Conclusions</p> <p>Majority of the medical students in this study had access to internet and were using it for both academic and personal reasons. Nevertheless, it was seen that there is under utilization of the potential of internet resources to augment learning. Increase in awareness, availability of requisite facilities and training in computing skills are required to enable better utilization of digital resources of digital resources by medical students.</p

    Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis.

    Get PDF
    Hypoxia is a common feature of locally advanced breast cancers that is associated with increased metastasis and poorer survival. Stabilisation of hypoxia-inducible factor-1α (HIF1α) in tumours causes transcriptional changes in numerous genes that function at distinct stages of the metastatic cascade. We demonstrate that expression of RIOK3 (RIght Open reading frame kinase 3) was increased during hypoxic exposure in an HIF1α-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused MDA-MB-231 to become elongated and this morphological change was due to a loss of protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell migration in two-dimensional cultures and inhibition of cell invasion through three-dimensional extracellular matrix. Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors including tropomyosins (TPM3 and TPM4) and tropomodulin 3. Depletion of RIOK3 in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation required for migration and invasion, biological processes that are necessary for hypoxia-driven metastasis

    The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer

    Get PDF
    The availability of bromodomain and extra-terminal inhibitors (BETi) has enabled translational epigenetic studies in cancer. BET proteins regulate transcription by selectively recognizing acetylated lysine residues on chromatin. BETi compete with this process leading to both downregulation and upregulation of gene expression. Hypoxia enables progression of triple negative breast cancer (TNBC), the most aggressive form of breast cancer, partly by driving metabolic adaptation, angiogenesis and metastasis through upregulation of hypoxia-regulated genes (for example, carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A). Responses to hypoxia can be mediated epigenetically, thus we investigated whether BETi JQ1 could impair the TNBC response induced by hypoxia and exert anti-tumour effects. JQ1 significantly modulated 44% of hypoxia-induced genes, of which two-thirds were downregulated including CA9 and VEGF-A. JQ1 prevented HIF binding to the hypoxia response element in CA9 promoter, but did not alter HIF expression or activity, suggesting some HIF targets are BET-dependent. JQ1 reduced TNBC growth in vitro and in vivo and inhibited xenograft vascularization. These findings identify that BETi dually targets angiogenesis and the hypoxic response, an effective combination at reducing tumour growth in preclinical studies

    Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts.

    Get PDF
    Inhibition of vascular endothelial growth factor increases response rates to chemotherapy and progression-free survival in glioblastoma. However, resistance invariably occurs, prompting the urgent need for identification of synergizing agents. One possible strategy is to understand tumor adaptation to microenvironmental changes induced by antiangiogenic drugs and test agents that exploit this process. We used an in vivo glioblastoma-derived xenograft model of tumor escape in presence of continuous treatment with bevacizumab. U87-MG or U118-MG cells were subcutaneously implanted into either BALB/c SCID or athymic nude mice. Bevacizumab was given by intraperitoneal injection every 3 days (2.5 mg/kg/dose) and/or dichloroacetate (DCA) was administered by oral gavage twice daily (50 mg/kg/dose) when tumor volumes reached 0.3 cm(3) and continued until tumors reached approximately 1.5-2.0 cm(3). Microarray analysis of resistant U87 tumors revealed coordinated changes at the level of metabolic genes, in particular, a widening gap between glycolysis and mitochondrial respiration. There was a highly significant difference between U87-MG-implanted athymic nude mice 1 week after drug treatment. By 2 weeks of treatment, bevacizumab and DCA together dramatically blocked tumor growth compared to either drug alone. Similar results were seen in athymic nude mice implanted with U118-MG cells. We demonstrate for the first time that reversal of the bevacizumab-induced shift in metabolism using DCA is detrimental to neoplastic growth in vivo. As DCA is viewed as a promising agent targeting tumor metabolism, our data establish the timely proof of concept that combining it with antiangiogenic therapy represents a potent antineoplastic strategy

    Pets as Sentinels of Human Exposure to Neurotoxic Metals

    Get PDF
    The idea that animals may be used as sentinels of environmental hazards pending over humans and the associated public health implications is not a new one. Nowadays pets are being used as bioindicators for the effects of environmental contaminants in human populations. This is of paramount importance due to the large increase in the worldwide distribution of synthetic chemicals, particularly in the built environment. Companion animals share the habitat with humans being simultaneously exposed to and suffering the same disease spectrum as their masters. Moreover, their shorter latency periods (due to briefer lifespans) enable them to act as early warning systems, allowing timely public health interventions. The rise on ethical constraints on the use of animals and, consequently, on the sampling they can be subjected to has led to the preferential use of noninvasive matrices, and in this case we are looking into hair. This chapter focuses in three non-essential metals: mercury, lead, and cadmium, due to their ubiquitous presence in the built environment and their ability of affecting the mammal nervous system. There is a fairly short amount of studies reporting the concentrations of these metals in pets’ hair, particularly for cats. These studies are characterized, and the metal concentrations corresponding to different parameters (e.g., age, sex, diet, rearing) are described in order to provide the reader with a general vision on the use of this noninvasive matrix on the studies conducted since the last two decades of the twentieth century.publishe

    p21WAF1/CIP1 Upregulation through the Stress Granule-Associated Protein CUGBP1 Confers Resistance to Bortezomib-Mediated Apoptosis

    Get PDF
    p21(WAF1/CIP1) is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown.We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( =  PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis.We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1
    corecore