906 research outputs found

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio

    True high-order VCO-based ADC

    Get PDF
    A novel approach to use a voltage-controlled oscillator (VCO) as the first integrator of a high-order continuous-time delta-sigma modulator (CT-DSM) is presented. In the proposed architecture, the VCO is combined with a digital up-down counter to implement the first integrator of the CT-DSM. Thus, the first integrator is digital-friendly and hence can maximally benefit from technological scaling

    Digital bilinear feedback for low‐power double‐sampling sigma–delta modulators

    Full text link

    Solving the Richardson equations for Fermions

    Full text link
    Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction strength can be calculated by solving a set of non-linear coupled equations. However, in the case of Fermions these equations lead to singularities which made them very hard to solve. This letter explains how these singularities can be avoided through a change of variables making the Fermionic pairing problem numerically solvable for arbitrary single particle energies and degeneracies.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Maximum occupation number for composite boson states

    Full text link
    One of the major differences between fermions and bosons is that fermionic states have a maximum occupation number of one, whereas the occupation number for bosonic states is in principle unlimited. For bosons that are made up of fermions, one could ask the question to what extent the Pauli principle for the constituent fermions would limit the boson occupation number. Intuitively one can expect the maximum occupation number to be proportional to the available volume for the bosons divided by the volume occupied by the fermions inside one boson, though a rigorous derivation of this result has not been given before. In this letter we show how the maximum occupation number can be calculated from the ground-state energy of a fermionic generalized pairing problem. A very accurate analytical estimate of this eigenvalue is derived. From that a general expression is obtained for the maximum occupation number of a composite boson state, based solely on the intrinsic fermionic structure of the bosons. The consequences for Bose-Einstein condensates of excitons in semiconductors and ultra cold trapped atoms are discussed.Comment: 4 pages, Revte

    Quantum Monte Carlo simulation in the canonical ensemble at finite temperature

    Full text link
    A quantum Monte Carlo method with non-local update scheme is presented. The method is based on a path-integral decomposition and a worm operator which is local in imaginary time. It generates states with a fixed number of particles and respects other exact symmetries. Observables like the equal-time Green's function can be evaluated in an efficient way. To demonstrate the versatility of the method, results for the one-dimensional Bose-Hubbard model and a nuclear pairing model are presented. Within the context of the Bose-Hubbard model the efficiency of the algorithm is discussed.Comment: 11 pages, 8 figure

    A quantum Monte-Carlo method for fermions, free of discretization errors

    Full text link
    In this work we present a novel quantum Monte-Carlo method for fermions, based on an exact decomposition of the Boltzmann operator exp(−ÎČH)exp(-\beta H). It can be seen as a synthesis of several related methods. It has the advantage that it is free of discretization errors, and applicable to general interactions, both for ground-state and finite-temperature calculations. The decomposition is based on low-rank matrices, which allows faster calculations. As an illustration, the method is applied to an analytically solvable model (pairing in a degenerate shell) and to the Hubbard model.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    A Sub-Picojoule per Bit Integrated Magneto-Optic Modulator on Silicon: Modeling and Experimental Demonstration

    Get PDF
    Integrated magneto-optic (MO) modulators are an attractive but not fully explored alternative to electro-optic (EO) modulators. They are current driven, structurally simple, and could potentially achieve high efficiency in cryogenic and room temperature environments where fJ bit−1 optical interfaces are needed. In this paper, the performance and energy efficiency of a novel MO modulator at room temperature are for the first time assessed. First, a model of the micro-ring-based modulator is implemented to investigate the design parameters and their influence on the performance. Then, a fabricated device is experimentally characterized to assess its performance in terms of bit rate and energy efficiency. The model shows efficient operation at 1.2 Gbps using a 16 mA drive current, consuming only 155 fJ bit−1. The experimental results show that the MO effect is suitable for modulation, achieving error-free operation above 16 mA with a power consumption of 258 fJ bit−1 at a transient limited data rate of 1.2 Gbps

    Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing

    Get PDF
    ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress-induced IRE1α signaling pathway, using the inhibitor 4ÎŒ8C, blocks TGFÎČ-induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α(-/-) fibroblasts and expression of IRE1α-mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR-150 and thereby to release the suppressive effect that miR-150 exerted on αSMA expression through c-Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP-1-dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases
    • 

    corecore