39 research outputs found

    Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling

    Get PDF
    Greedy heuristics may be attuned by looking ahead for each possible choice, in an approach called the rollout or Pilot method. These methods may be seen as meta-heuristics that can enhance (any) heuristic solution, by repetitively modifying a master solution: similarly to what is done in game tree search, better choices are identified using lookahead, based on solutions obtained by repeatedly using a greedy heuristic. This paper first illustrates how the Pilot method improves upon some simple well known dispatch heuristics for the job-shop scheduling problem. The Pilot method is then shown to be a special case of the more recent Monte Carlo Tree Search (MCTS) methods: Unlike the Pilot method, MCTS methods use random completion of partial solutions to identify promising branches of the tree. The Pilot method and a simple version of MCTS, using the Δ\varepsilon-greedy exploration paradigms, are then compared within the same framework, consisting of 300 scheduling problems of varying sizes with fixed-budget of rollouts. Results demonstrate that MCTS reaches better or same results as the Pilot methods in this context.Comment: Learning and Intelligent OptimizatioN (LION'6) 7219 (2012

    Power ultrasound irradiation during the alkaline etching process of the 2024 aluminium alloy

    No full text
    International audienc

    Continuous Upper Confidence Trees

    Get PDF
    Upper Confidence Trees are a very efficient tool for solving Markov Decision Processes; originating in difficult games like the game of Go, it is in particular surprisingly efficient in high dimensional problems. It is known that it can be adapted to continuous domains in some cases (in particular continuous action spaces). We here present an extension of Upper Confidence Trees to continuous stochastic problems. We (i) show a deceptive problem on which the classical Upper Confidence Tree approach does not work, even with arbitrarily large computational power and with progressive widening (ii) propose an improvement, termed double-progressive widening, which takes care of the compromise between variance (we want infinitely many simulations for each action/state) and bias (we want sufficiently many nodes to avoid a bias by the first nodes) and which extends the classical progressive widening (iii) discuss its consistency and show experimentally that it performs well on the deceptive problem and on experimental benchmarks. We guess that the double-progressive widening trick can be used for other algorithms as well, as a general tool for ensuring a good bias/variance compromise in search algorithms
    corecore