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Continuous Upper Confidence Trees

Adrien Couëtoux1,2, Jean-Baptiste Hoock1, Nataliya Sokolovska1, Olivier
Teytaud1, and Nicolas Bonnard2

1 TAO-INRIA, LRI, CNRS UMR 8623,
Université Paris-Sud, Orsay, France

2 Artelys, 12 rue du Quatre Septembre Paris, France

Abstract. Upper Confidence Trees are a very efficient tool for solv-
ing Markov Decision Processes; originating in difficult games like the
game of Go, it is in particular surprisingly efficient in high dimensional
problems. It is known that it can be adapted to continuous domains
in some cases (in particular continuous action spaces). We here present
an extension of Upper Confidence Trees to continuous stochastic prob-
lems. We (i) show a deceptive problem on which the classical Upper
Confidence Tree approach does not work, even with arbitrarily large
computational power and with progressive widening (ii) propose an im-
provement, termed double-progressive widening, which takes care of the
compromise between variance (we want infinitely many simulations for
each action/state) and bias (we want sufficiently many nodes to avoid a
bias by the first nodes) and which extends the classical progressive widen-
ing (iii) discuss its consistency and show experimentally that it performs
well on the deceptive problem and on experimental benchmarks. We
guess that the double-progressive widening trick can be used for other
algorithms as well, as a general tool for ensuring a good bias/variance
compromise in search algorithms.

1 Introduction

Monte-Carlo Tree Search [3] is now widely accepted as a great tool for high-
dimensional games [9] and high-dimensional planning [10]; its most well known
variant is Upper Confidence Trees [7]. It is already adapted to continuous do-
mains [12, 11], but not for arbitrary stochastic transitions; this paper is devoted
to this extension.

In section 2, we will present Progressive Widening (PW), a classical im-
provement of UCT in continuous or large domains. We will see that PW is not
sufficient for ensuring a good behavior in the most general setting; a simple
but not trivial modification, termed double-PW, is proposed and validated. Ex-
periments (section 3) will show that this modification makes UCT for Markov
Decision Processes compliant with high-dimensional continuous domains with
arbitrary stochastic transition.

In all the paper, #E denotes the cardinal of a set E.



2 Progressive widening for Upper Confidence Trees

Progressive strategies have been proposed in [4, 2] for tackling problems with
big action spaces; they have been theoretically analyzed in [13], and used for
continuous spaces in [11, 12]. We will here (i) define a variant of progressive
widening (section 2.1), (ii) show why it can’t be directly applied in some cases
(section 2.2), (iii) define our version (section 2.3).

2.1 Progressive widening

Consider an algorithm, choosing between options O = {o1, o2, . . . , on, . . . } at
several time steps. More formally, this is as follows:

R0 = 0
for t = 1, t = 2, t = 3, . . . do

Choose an option o(t) ∈ O.
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

The goal is to design the ”Choose” method so that the cumulated reward
increases as fast as possible. An option (terminology of bandits) is equivalent
to an action (terminology of reinforcement learning) or a move (terminology of
games).

Many papers have been published on such problems, in particular around
upper confidence bounds [8, 1]. Upper Confidence Bounds, in its simplest version,
proceeds as follows:

Upper confidence bound algorithm with parameter k.
R0 = 0
for t = 1, t = 2, t = 3, . . . do

Choose an option o(t) ∈ O maximizing scoret(o) defined as follows:
totalRewardt(o) =

∑
1≤l≤t−1,ol=o rl

nbt(o) =
∑

1≤l≤t−1,ol=o 1

scoret(o) = totalRewardt(o)
nbt(o)+1 + kucb

√
log(t)/(nbt(o) + 1) (+∞ if nbt(o) =

0)
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

Variants of the score function are termed “bandit algorithms”; there are
plenty of variants of the score formula; this is essentially independent of the
aspects investigated in this paper.

A trouble in many mathematical works around such problems is that the set
O is usually assumed small in front of the number of iterations. More precisely,
the behavior of the algorithm above is trivial for t ≤ #O. [14] proposed the use



of a constant s such that nbt(o) = 0⇒ scoret(o) = s; this is the so-called First
Play Urgency algorithm. There are other specialized efficient tools for bandits
used in “trees” such as rapid action value estimates [6, 5]; however these tools
assume some sort of homogenity between the actions at various time steps. [3,
13, 2] proposed progressive strategies for big/infinite sets of arms. The principle
is as follows for some constants C > 0 and α ∈]0, 1[ (as it is independent of the
algorithm used for choosing an option, within a given pool of possible options,
we do not explicitly write a score function as above):

Progressive widening with constants C > 0 and α ∈]0, 1[.
R0 = 0
for t = 1, t = 2, t = 3, . . . do

Let k = dCtαe.
Choose an option o(t) ∈ {o1, . . . , ok}.
Test it: get a reward rt.
Cumulate the reward: Rt = Rt−1 + rt.

end for

The key point is that the chosen option is restricted to have index ≤ k; the
complete set O = {o1, o2, . . . } is not allowed. This algorithm has the advantage
that it is anytime: we do not have to know in advance at which value of t the
algorithm will be stopped. [3] applied it successfully in the very efficient CrazyS-
tone implementation of Monte-Carlo Tree Search [4]. Upper Confidence Tree (or
Monte-Carlo Tree Search) is not a simple setting as above: when applying an op-
tion, we reach a new state; one can think of Monte-Carlo Tree Search (or UCT)
as having one bandit in each possible state s of the reinforcement learning prob-
lem, for choosing between (infinitely many) options o1(s), o2(s), . . . , on(s), . . . .
The algorithm is as follows, for a task in which all the reward is obtained in the
final state3. The last line of the algorithm (returning the most simulated action
from S) is often surprising for people who are not used to MCTS; it is known
as much better than choosing the action with best expected reward.

3 This assumption (that the reward is null except in the final state) simplifies the
writing, but is not necessary for the work presented here.



Progressive Widening (PW) applied in state s with constants C > 0
and α ∈]0, 1[.
Input: a state s.
Output: an action.
Let nbV isits(s)← nbV isits(s) + 1
and let t = nbV isits(s)
Let k = dCtαe.
Choose an option o(t)(s) ∈ {o1(s), . . . , ok(s)} maximizing scoret(s, o) defined
as follows:
totalRewardt(s, o) =

∑
1≤l≤t−1,ol(s)=o rl(s)

nbt(s, o) =
∑

1≤l≤t−1,ol=o 1

scoret(s, o) = totalRewardt(s,o)
nbt(s,o)+1 + kucb

√
log(t)/(nbt(s, o) + 1)

(+∞ if nbt(o) = 0)
Test it: get a state s′.

UCT algorithm with progressive widening
Input: a state S, a time budget.
Output: an action a.
Initialize: ∀s, nbSims(s) = 0
while Time not elapsed do

// starting a simulation.
s = S.
while s is not a terminal state do

Apply progressive widening in state s for choosing an option o.
Let s′ be the state reached from s when choosing action o.
s = s′

end while
// the simulation is over; it started at S and reached a final state.

Get a reward r = Reward(s) // s is a final state, it has a reward.
For all states s in the simulation above, let rnbV isits(s)(s) = r.

end while
Return the action which was simulated most often from S.

It is important to keep in mind that the progressive widening algorithm is
applied in each visited state; some states might be visited only once, or never,
and some other states are visited very often. MCTS with progressive widening
or progressive strategies is the only version of MCTS which works in continuous
action spaces [12, 11]; however, it was applied only with the property that ap-
plying a given action a in a given state s can lead to finitely many states only.
We will see in section 2.2 that this methodology (the algorithm above) does not
work as is in the case in which there is a null probability of reaching twice the
same state when applying the same action in the same state (i.e. typically it
does not work for stochastic transitions with continuous support).



2.2 Why it does not work as is for randomized transitions in
continuous domains

We have presented UCT with progressive widening. In this section we will show
why it is not sufficient for a consistent behavior (i.e. for a convergence toward
maximum expected reward) in some cases, in particular when the transitions
are stochastic and never lead twice to the state - one can think of the case of a
Gaussian additive noise, or any other noise such that states can be reached only
once.

Let us assume now that we have an infinite (discrete or continuous) domain
of options. This is not too much a trouble for progressive widening: if α ∈]0, 1[,
and if the ot are a good approximation of the set of possible actions (typically,
in continuous domains, we assume that the set {oi; i ≥ 1} is dense in the set of
actions and the reward has some smoothness properties), then asymptotically,
good actions are explored, and all these explored actions are sampled infinitely
often [13].

Let us now consider what happens if we have randomized transitions. Assume
that for a state s and an action a, we can reach infinitely many transitions.
Consider such a state s, and assume that we visit it infinitely often; we would
like the algorithms to have two characteristics:

1. infinitely many actions (a1, α2, a3, . . . ) will be explored (for reducing the bias
due to the choice of actions);

2. all states that can be reached from s are themselves explored infinitely often
(for reducing the variance due to random exploration).

We do not have a mathematical proof that these two requirements are
enough, but they look quite reasonnable: in order to approximate a continuous
set of actions, and unless we have an efficient pruning to a finite set of actions,
we will have to explore infinitely many actions; and if we consider only finitely
many possible consequences of an action whereas the real support is infinite we
will miss important facts and it is hard to believe that the algorithm can be
consistent.

For classical score functions, progressive widening will ensure the first prop-
erty. But the second property will not be ensured, as in continuous domains with
stochastic transitions, nothing ensures that we will reach twice the same state,
whenever we play infinitely often a given action a in a given state s. This will
be illustrated on the Trap problem later.

The following section is devoted to proposing a solution to this problem.

2.3 Proposed solution: double progressive widening

Section 2.1 has presented the known form of progressive widening, and section
2.2 has shown that in some cases it does not work (namely, when there are
pairs (s, a) such that, with probability one, applying a in s infinitely often does
not lead to visiting the following states infinitely often). In this section, we



propose the use of a second form of progressive widening in MCTS, as follows:

Double Progressive Widening (DPW) applied in state s with constants
C > 0 and α ∈]0, 1[.
Input: a state s.
Output: a state s′.
Let nbV isits(s)← nbV isits(s) + 1
and let t = nbV isits(s)
Let k = dCtαe.
Choose an option o(t)(s) ∈ {o1(s), . . . , ok(s)} maximizing scoret(s, o) defined as
follows:
totalRewardt(s, o) =

∑
1≤l≤t−1,ol(s)=o

rl(s)

nbt(s, o) =
∑

1≤l≤t−1,o(l)(s)=o
1

scoret(s, o) = totalRewardt(s,o)
nbt(s,o)+1

+ kucb
√

log(t)/(nbt(s, o) + 1) (+∞ if nbt(o) = 0)

Let k′ = dCnbt(s, o(t)(s))αe
if k′ > #Childrent(s, o(t)(s)) // progressive widening on the random part then

Test option o(t)(s); get a new state s′

if s′ 6∈ Childrent(s, o(t)) then
Childrent+1(s, o(t)) = Childrent(s, o(t)) ∪ {s′}

else
Childrent+1(s, o(t)) = Childrent(s, o(t))

end if
else
Childrent+1(s, o(t)) = Childrent(s, o(t))
Choose s′ in Childrent(s, o(t)) // s′ is chosen with probability
nbt(s, o, s

′)/nbt(s, o)
end if

UCT algorithm with DPW
Input: a state S.
Output: an action a.
Initialize: ∀s, nbSims(s) = 0
while Time not elapsed do

// starting a simulation.
s = S.
while s is not a terminal state do

Apply DPW in state s for choosing an option o.
Let s′ be the state given by DPW.
s = s′

end while
// the simulation is over; it started at S and reached a final state.

Get a reward r = Reward(s) // s is a final state, it has a reward.
For all states s in the simulation above, let rnbV isits(s)(s) = r.

end while
Return the action which was simulated most often from S.

This algorithm is not so intuitive, for the second progressive widening part.
The idea is as follows:



– If k′ is large enough, we consider adding one more child to the pool of visited
children: we simulate a transition and get a state s′. If we get an already
visited child, then we go to this child; otherwise, we create a new child.

– If k′ is not large enough, then we sample one of the previously seen children.
As they are not necessarily equally likely, we select a child proportionally to
the number of times it has been generated.

The algorithm has been designed with a “consistency” objective in mind,
which is twofolds:

– Infinite visiting: we want that if a node is visited infinitely often, then we
generate infinitely many children, and each of these children is itself visited
infinitely often. By induction, this property ensures that all created nodes
are visited infinitely often. Progressive widening and the UCB formula (or
many other formulas in fact) ensure this property.

– Propagation: the average reward of any node visited infinitely often converges
to a limit and this limit (for a non-terminal node) is the average reward
corresponding to its children which have best asymptotic average reward.
This property is ensured by the careful sampling in the progressive widening.

3 Experiments

In section 3.1 we present a deceptive problem designed specifically for pointing
out the inconsistency of the classical PW approach. In section 3.2 we treat a
more real problem.

3.1 Trap problem

In this section we present the toy problem, aimed at being (i) deceptive for the
simple progressive widening (ii) as simple as possible. We provide our experi-
mental results as well.

Problem description. This problem has been designed to clearly illustrate
the weakness of the simple progressive widening. In this problem, one has to
make two successive decisions, in order to maximize the reward. As we will see,
the optimal policy is to make a risky move at the first step, in order to be able
to obtain the maximum reward on the second (and last) step. The state will
be denoted x, and is initialized at x0 = 0. At each time step t the decision is
denoted dt ∈ [0, 1]. Let R > 0 be the noise amplitude at each time step. At a
time step t, given the current state xt and a decision dt, we have:

xt+1 = xt + dt +R× Y,

Y being a random variable following a uniform distribution on [0, 1].
The trap problem relies on five positive real numbers: the high reward h,

the average reward a, the initial ramp length l, and the trap width w. The high



reward will be given if and only if we cross the trap, otherwise we obtain 0. If we
stay on the initial ramp, we get the average reward. We thus define the reward
function r(·) as follows:

r(x) =

 a if x < l
0 if l < x < l + w
h if x > l + w

The objective is to maximize r(x0) + r(x1), the cumulated reward.

The shape of the reward function is shown in Fig.1.

Fig. 1. Shape of the reward function: Trap problem.

Experimental results. We compare simple progressive widening and dou-
ble progressive widening on the trap problem. In our experiments, we used the
following settings: a = 70, h = 100, l = 1, w = 0.7, R = 0.01. With these
parameters, the optimal behavior si to have the first decision d0 ∈ [0.7, 1] and
d1 ≥ 1.7 − d0. If one makes optimal decisions, one has an expected reward of
r∗ = 170. That is the reward toward which the Double progressive widening
version of Monte Carlo Tree Search converges. However, the Simple progressive
widening version does not reach this optimal reward. Worse, as we increase the
computation time, it becomes less efficient, converging toward a local optimum,
140.

The mean values of the rewards are shown in Fig. 2 and the medians of the
rewards are shown in Fig. 3. Each point is computed according to 100 simula-
tions.
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Fig. 2. Mean of the reward, for the trap problem with a = 70, h = 100, l =
1, w = 0.7, R = 0.01. The estimated standard deviations of the rewards are
STDDPW = [13.06, 12.88, 12.88, 12.06, 14.70, 0, 0] for Double PW and STDSPW =
[7.16, 7.16, 8.63, 9.05, 0, 0, 0] for Simple PW - the differences are clearly significant,
where STD means standard deviation.

3.2 The power management problem

In this section we present a real world problem. We show our experimental results
for various settings of the power management problem.

Problem description. The experimental setup is an energy stock management
problem. We have finitely many energy stocks (nuclear stocks, water stocks), each
of them can be used to produce electricity; we can also produce electricity with
classical thermal plants, that are more costly. The problem is to find the right
tradeoff between

– using stocks now (in order to save up money), with the risk that later we
might have peaks of demands, leading to very high costs if we do not have
enough stocks.

– keeping stocks for later (in order to avoid the trouble above), with the risk
that we might have too much in a stock if there is no big peak of demand.

Also, even for a fixed amount of water used from the stocks, we have to decide
which stock we want to use. In particular, stocks above a given level are lost
(because we have to get rid of water when the level is too high). All stocks are



135

140

145

150

155

160

165

170

175

-5 -4 -3 -2 -1 0 1

R
e
w

a
rd

 (
M

e
a
n

)

log10(computation time)

Simple PW vs Double PW

 Double PW
 Simple PW

Fig. 3. Median of the reward, for the trap problem with a = 70, h = 100, l = 1,
w = 0.7, R = 0.01

not equivalent: some of them have stronger inflows than others, and the used
part of some stocks is transfered to other stocks whereas others are not or not
to the same. One can think of a graph of reservoirs, water used in a given stock
being forwarded to another stock given by the graph. In our implementation,
the demand is a function of the time, determined in advance. The inflows, how-
ever, follow a lognormal distribution. Hence, they take different values from one
simulation to the other.

The code of the problem can be found in http://www.lri.fr/~couetoux/

stock.cpp or requested by email.

Small size experiments. We consider here 2 stocks only and 5 time
steps. We compare the Q-learning algorithm from the Mash project http:

//mash-project.eu/, our progressive widening Monte-Carlo Tree Search ap-
proach, a greedy algorithm only maximizing the short term, and a blind planner
optimizing a sequence of decisions regardless of stock levels. Results are pre-
sented in Fig. 4. We plot the median values of cumulated reward as a function
of time. It is easy to see that the Simple and Double PW MCTS achieve the
best performance, compared to Blind, Greedy, and Q-learning approaches. In
this particular (power management) problem, decisions are strongly associated
with stock levels (states). The performance of the Blind is poor, since it makes
illegal decisions rather often. Our implementation of the Q-learning suffers from
the same phenomenon.
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Fig. 4. The power management problem. Median values of cumulated reward with 2
stocks and 5 time steps.

Bigger size experiments. We here switch to 6 stocks and 21 time steps,
corresponding to 3 time steps per day, one week, with an expected increase of
demand at some point during the week. Results are presented in Fig. 5. Note,
that the conclusion is the same as for the small scale problem, described above:
the proposed Simple and Double PW MCTS are very competitive compared to
other tested methods. We did not include the results of the Q-learning. In this
setting, the Q-learning obtained rather poor rewards. For the sake of clarity of
results of other approaches, we do not show the performance of the Q-learning
on Fig 5.

4 Conclusion

We have modified progressive widening in order to make it compliant with contin-
uous domains with general noise. Experimentally, the “double-PW” modification
was very efficient on deceptive problems aimed at pointing out the weaknesses
of simple PW; we conjecture that for some problems, both versions are roughly
equivalent, and for some problems the double PW is much better. On the other
hand, on a realistic problem, the modification had disappointingly little effect.
The formal proof of the consistency of the double PW (i.e. the convergence to
the optimal reward for wide classes of Markov Decision Processes) has not been
given and is the main further work.
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