190 research outputs found

    Cold gas in group-dominant elliptical galaxies

    Get PDF
    We present IRAM 30m telescope observations of the CO(1-0) and (2-1) lines in a sample of 11 group-dominant elliptical galaxies selected from the CLoGS nearby groups sample. Our observations confirm the presence of molecular gas in 4 of the 11 galaxies at >4 sigma significance, and combining these with data from the literature we find a detection rate of 43+-14%, comparable to the detection rate for nearby radio galaxies, suggesting that group-dominant ellipticals may be more likely to contain molecular gas than their non-central counterparts. Those group-dominant galaxies which are detected typically contain ~2x10^8 Msol of molecular gas, and although most have low star formation rates (<1 Msol/yr) they have short depletion times, indicating that the gas must be replenished on timescales ~100 Myr. Almost all of the galaxies contain active nuclei, and we note while the data suggest that CO may be more common in the most radio-loud galaxies, the mass of molecular gas required to power the active nuclei through accretion is small compared to the masses observed. We consider possible origin mechanisms for the gas, through cooling of stellar ejecta within the galaxies, group-scale cooling flows, and gas-rich mergers, and find probable examples of each type within our sample, confirming that a variety of processes act to drive the build up of molecular gas in group-dominant ellipticals.Comment: 9 pages, 5 postscript figures, 4 tables, accepted by A&A. Revised throughout in response to referee's comments, including updates to Table 1 and Figure 4, and addition of Figure

    Deep Chandra Observations of HCG 16 - II. The Development of the Intra-group Medium in a Spiral-Rich Group

    Full text link
    We use a combination of deep Chandra X-ray observations and radio continuum imaging to investigate the origin and current state of the intra-group medium in the spiral-rich compact group HCG 16. We confirm the presence of a faint (LX,boloL_{X,{\rm bolo}}=1.870.66+1.03^{+1.03}_{-0.66}×\times1041^{41} erg/s), low temperature (0.300.05+0.07^{+0.07}_{-0.05} keV) intra-group medium (IGM) extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous Rosat and XMM-Newton observations. This ridge contains 6.63.3+3.9^{+3.9}_{-3.3}×\times109^9 solar masses of hot gas and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialised, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20-40% of the observed hot gas in the system.Comment: 11 pages, 6 figures, 1 table, accepted for publication in ApJ; updated references and fixed typos identified at proof stag

    AGN Feedback in groups and clusters of galaxies

    Full text link
    The lack of very cool gas at the cores of groups and clusters of galaxies, even where the cooling time is significantly shorter than the Hubble time, has been interpreted as evidence of sources that re-heat the intergalactic medium. Most studies of rich clusters adopt AGN feedback to be this source of heating. From ongoing GMRT projects involving clusters and groups, we demonstrate how low-frequency GMRT radio observations, together with Chandra/XMM-Newton X-ray data, present a unique insight into the nature of feedback, and of the energy transfer between the AGN and the IGM.Comment: 5 pages, 3 figures, To appear in ASP Conference Series, Vol. 407, The Low-Frequency Radio Universe, Eds: D. J. Saikia, D. A. Green, Y. Gupta and T. Venturi (Invited talk, conference held at NCRA-TIFR, Pune, INDIA, 8-12 December, 2008

    The Complete Local Volume Groups Sample - I. Sample Selection and X-ray Properties of the High-Richness Subsample

    Get PDF
    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically-selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei, and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least 4 optically bright (log L_B>=10.2 LBsol) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65kpc and with luminosity >10^41 erg/s, while a further 3 groups host smaller galaxy-scale gas halos. The X-ray bright groups have masses in the range M_500=0.5-5x10^13 Msol, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200x10^41 erg/s. We find that ~53-65% of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30% of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ~35% of their dominant early-type galaxies host AGN with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (L_X,R500<10^42 erg/s) with no concentrated cool core, or highly disturbed. This leads us to suggest that ~20% of X-ray bright groups in the local universe may still be unidentified.Comment: Accepted for publication by MNRAS, 25 Manuscript pages with 6 tables and 10 figures, plus 30 pages of appendices. v2 corrects minor typographical errors identified at proof stag

    Deep Chandra Observations of HCG 16 - I. Active Nuclei, Star formation and Galactic Winds

    Full text link
    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation and the high luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe-Kα\alpha emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infra-red and ultra-violet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.Comment: 18 pages, 11 figures, 11 tables, accepted for publication in ApJ; updated references and fixed typos identified at proof stag

    Cavities and shocks in the galaxy group HCG 62 as revealed by Chandra, XMM and GMRT data

    Full text link
    We report on the results of an analysis of Chandra, XMM-Newton and new GMRT data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for AGN/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHz and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of 104\sim 10^{-4}, and that the radio pressure of the lobes is about one order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the south-west of the group center, close to the southern radio lobe, with a Mach number 1.5\sim 1.5 and a total power which is about one order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.Comment: 14 pages, 8 figures, accepted for publication in ApJ. Revised version including minor comments and expanded discussion (version with full resolution figures available at http://hea-www.harvard.edu/~mgitti/hcg62-gitti.pdf

    M31 Transverse Velocity and Local Group Mass from Satellite Kinematics

    Full text link
    We present several different statistical methods to determine the transverse velocity vector of M31. The underlying assumptions are that the M31 satellites on average follow the motion of M31 through space, and that the galaxies in the outer parts of the Local Group on average follow the motion of the Local Group barycenter through space. We apply the methods to the line-of-sight velocities of 17 M31 satellites, to the proper motions of the 2 satellites M33 and IC 10, and to the line-of-sight velocities of 5 galaxies near the Local Group turn around radius, respectively. This yields 4 independent but mutually consistent determinations of the heliocentric M31 transverse velocities in the West and North directions, with weighted averages = -78+/-41 km/s and = -38+/-34 km/s. The Galactocentric tangential velocity of M31 is 42 km/s, with 1-sigma confidence interval V_tan <= 56 km/s. The implied M31-Milky Way orbit is bound if the total Local Group mass M exceeds 1.72^{+0.26}_{-0.25}x10^{12} solar masses. If indeed bound, then the timing argument combined with the known age of the Universe implies that M = 5.58^{+0.85}_{-0.72}x10^{12} solar masses. This is on the high end of the allowed mass range suggested by cosmologically motivated models for the individual structure and dynamics of M31 and the Milky Way, respectively. It is therefore possible that the timing mass is an overestimate of the true mass, especially if one takes into account recent results from the Millennium Simulation that show that there is also a theoretical uncertainty of 41 percent (Gaussian dispersion) in timing mass estimates. The M31 transverse velocity implies that M33 is in a tightly bound orbit around M31. This may have led to some tidal deformation of M33. It will be worthwhile to search for observational evidence of this.Comment: ApJ in press, 14 pages, including 3 figures (has minor revisions with respect to previously posted version to address referee comments

    Globular Clusters and X-ray Point Sources in Centaurus A (NGC 5128)

    Full text link
    We detect 353 X-ray point sources, mostly low-mass X-ray binaries (LMXBs), in four Chandra observations of Centaurus A (NGC 5128), the nearest giant early-type galaxy, and correlate this point source population with the largest available ensemble of confirmed and likely globular clusters associated with this galaxy. Of the X-ray sources, 31 are coincident with 30 globular clusters that are confirmed members of the galaxy by radial velocity measurement (2 X-ray sources match one globular cluster within our search radius), while 1 X-ray source coincides with a globular cluster resolved by HST images. Another 36 X-ray point sources match probable, but spectroscopically unconfirmed, globular cluster candidates. The color distribution of globular clusters and cluster candidates in Cen A is bimodal, and the probability that a red, metal rich GC candidate contains an LMXB is at least 1.7 times that of a blue, metal poor one. If we consider only spectroscopically confirmed GCs, this ratio increases to ~3. We find that LMXBs appear preferentially in more luminous (massive) GCs. These two effects are independent, and the latter is likely a consequence of enhanced dynamical encounter rates in more massive clusters which have on average denser cores. The X-ray luminosity functions of the LMXBs found in GCs and of those that are unmatched with GCs reveal similar underlying populations, though there is some indication that fewer X-ray faint LMXBs are found in globular clusters than X-ray bright ones. Our results agree with previous observations of the connection of GCs and LMXBs in early-type galaxies and extend previous work on Centaurus A.Comment: 34 pages, 10 figures, 2 tables, Accepted for Publication in The Astrophysical Journa
    corecore