491 research outputs found

    Optical properties of the NGC 5328 group of galaxies

    Full text link
    We present the results of a photometric and spectroscopic study of seven members of the NGC 5328 group of galaxies, a chain of galaxies spanning over 200 kpc (H_0 = 70 km/s/Mpc). We analyze the galaxy structure and study the emission line properties of the group members looking for signatures of star formation and AGN activity. We finally attempt to infer, from the modeling of line-strength indices, the stellar population ages of the early-type members. We investigate also the presence of a dwarf galaxy population associated with the bright members. The group is composed of a large fraction of early-type galaxies including NGC 5328 and NGC 5330, two bona fide ellipticals at the center of the group. In both galaxies no recent star formation episodes are detected by the H_beta vs. MgFe indices of these galaxies. 2MASX J13524838-2829584 has extremely boxy isophotes which are believed to be connected to a merging event: line strength indices suggest that this object probably had a recent star formation episode. A warped disc component emerges from the model subtracted image of 2MASX J13530016-2827061 which is interpreted as a signature of an ongoing interaction with the rest of the group. Ongoing star formation and nuclear activity is present in the projected outskirts of the group. The two early-type galaxies 2MASX J13523852-2830444 and 2MASX J13525393-2831421 show spectral signatures of star formation, while a Seyfert 2 type nuclear activity is detected in MCG -5-33-29.Comment: 18 pages, 12 figures, accepted for publication in MNRA

    Experimental realization of Dicke states of up to six qubits for multiparty quantum networking

    Get PDF
    We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by four standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon GHZ and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX

    How Stands Collapse II

    Get PDF
    I review ten problems associated with the dynamical wave function collapse program, which were described in the first of these two papers. Five of these, the \textit{interaction, preferred basis, trigger, symmetry} and \textit{superluminal} problems, were discussed as resolved there. In this volume in honor of Abner Shimony, I discuss the five remaining problems, \textit{tails, conservation law, experimental, relativity, legitimization}. Particular emphasis is given to the tails problem, first raised by Abner. The discussion of legitimization contains a new argument, that the energy density of the fluctuating field which causes collapse should exert a gravitational force. This force can be repulsive, since this energy density can be negative. Speculative illustrations of cosmological implications are offered.Comment: 37 page

    The Kinematics of the Outer Halo of M87

    Get PDF
    Radial velocities are presented for a new sample of globular clusters in the outer halo of M87 at a distance of 300 to 540 arcsec (24 to 43 kpc) from the center of this galaxy. These are used to augment our previously published data and an analysis of the rotation and velocity dispersion of the M87 globular cluster system is carried out. The rotation is 300\sim300 \kms at R = 32 kpc, at which point the velocity dispersion is also still quite high, 450\sim450 \kms. The high rotation is interesting. The outer halo of M87 is, as was found in our previous kinematic analysis, very massive.Comment: Accepted for publication in the AJ. 13 pages with 3 figure

    Optimal Quantum Cloning via Stimulated Emission

    Get PDF
    We show that optimal universal quantum cloning can be realized via stimulated emission. Universality of the cloning procedure is achieved by choosing systems that have appropriate symmetries. We first discuss a scheme based on stimulated emission in certain three-level-systems, e.g. atoms in a cavity. Then we present a way of realizing optimal universal cloning based on stimulated parametric down-conversion. This scheme also implements the optimal universal NOT operation.Comment: 4 pages, 3 figure

    Logical independence and quantum randomness

    Full text link
    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.Comment: 9 pages, 4 figures, published version plus additional experimental appendi

    Using weak values to experimentally determine "negative probabilities" in a two-photon state with Bell correlations

    Full text link
    Bipartite quantum entangled systems can exhibit measurement correlations that violate Bell inequalities, revealing the profoundly counter-intuitive nature of the physical universe. These correlations reflect the impossibility of constructing a joint probability distribution for all values of all the different properties observed in Bell inequality tests. Physically, the impossibility of measuring such a distribution experimentally, as a set of relative frequencies, is due to the quantum back-action of projective measurements. Weakly coupling to a quantum probe, however, produces minimal back-action, and so enables a weak measurement of the projector of one observable, followed by a projective measurement of a non-commuting observable. By this technique it is possible to empirically measure weak-valued probabilities for all of the values of the observables relevant to a Bell test. The marginals of this joint distribution, which we experimentally determine, reproduces all of the observable quantum statistics including a violation of the Bell inequality, which we independently measure. This is possible because our distribution, like the weak values for projectors on which it is built, is not constrained to the interval [0, 1]. It was first pointed out by Feynman that, for explaining singlet-state correlations within "a [local] hidden variable view of nature ... everything works fine if we permit negative probabilities". However, there are infinitely many such theories. Our method, involving "weak-valued probabilities", singles out a unique set of probabilities, and moreover does so empirically.Comment: 9 pages, 3 figure

    Contribution to understanding the mathematical structure of quantum mechanics

    Full text link
    Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitudes, Born rule, commutation and uncertainty relations, probability density current, momentum operator, rules for including the scalar and vector potentials and antiparticles can be obtained from the probabilistic description of results of measurement of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schrodinger equation and Dirac equation are obtained from the requirement of the relativistic invariance of the space-time Fisher information. The limit case of the delta-like probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems and the postulates of quantum mechanics are also discussed.Comment: 21 page
    corecore