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We report the first experimental generation and characterization of a six-photon Dicke state. The

produced state shows a fidelity of F ¼ 0:56� 0:02 with respect to an ideal Dicke state and violates a

witness detecting genuine six-qubit entanglement by 4 standard deviations. We confirm characteristic

Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon

Dicke states, as well as four-photon Greenberger-Horne-Zeilinger and W states. We also show that Dicke

states have interesting applications in multiparty quantum networking protocols such as open-destination

teleportation, telecloning, and quantum secret sharing.

DOI: 10.1103/PhysRevLett.103.020503 PACS numbers: 03.67.Bg, 03.67.Mn, 42.50.Dv, 42.50.Ex

Multipartite entanglement is at the core of studies prob-
ing the foundations of quantum physics and represents a
key component in a wide range of quantum-information
processing tasks [1]. So far, Greenberger-Horne-Zeilinger
(GHZ) [2], W [3], cluster, and graph states [4] have been
studied and experimentally investigated [5]. However,
other nonequivalent classes of quantum states with inter-
esting symmetries exist [6]. In particular, Dicke states [7]
provide a rich opportunity for exploring multipartite en-
tanglement. Recent studies have focused on techniques for
generating, detecting, and characterizing these states [8,9]
in atomic, ion-trap, [10] and optical [11] settings.

In this Letter we report the experimental generation and
investigation of a variety of multiphoton entangled states.
We present a flexible linear-optics setup that can produce
four-, five-, and six-photon representatives of the important
class of Dicke states, as well as four-photon GHZ states.
Information is encoded in the polarization degrees of free-
dom of entangled photons produced by high-order sponta-
neous parametric down-conversion (SPDC). We show that
our generated states are genuinely multipartite entangled
by using tailor-made and experimentally favorable witness
tools. These new characterization methods are important in
virtue of the nonideal nature of the six-photon state: al-
though spurious nonlinear processes affect its quality,
quantum features can still be observed and characterized.
We also highlight the potential for quantum control in large
Hilbert spaces by evaluating protocols such as open-
destination teleportation, telecloning, and quantum secret
sharing [11–15].

Experiment.—Figure 1(a) shows the setup for the gen-
eration of the three-excitation six-photon Dicke state

jDð3Þ
6 i ¼ 1ffiffiffiffi

20
p P

PjHHHVVVi123456. Here, jHðVÞii are hori-
zontal (vertical) polarization states of a photon in spatial
mode i ¼ 1; . . . ; 6, which encode the logical states of a
qubit, while

P
P denotes the sum over all permutations of

logical states [16]. In the setup, six photons are probabil-

istically distributed among the spatial modes by nonpola-
rizing beamsplitters (BSs): upon detecting one photon in

each mode we postselectively observe jDð3Þ
6 i. We use

higher-order emissions of a collinear type-II SPDC process
for the simultaneous production of three pairs of photons
[17]. A Coherent Inc. Verdi V-18 laser is combined with a
mode-locked Mira HP Ti:sapphire oscillator to reach the
energy necessary to observe third-order SPDC emissions.
The pulsed-laser output (� ¼ 200 fs, � ¼ 810 nm,
76 MHz) is frequency doubled using a 2-mm-thick lithium
triborate crystal, resulting in UV pulses of 1.4 W cw-
average. To avoid optical damage to the antireflection
coating of the lithium triborate, we continuously translate
it with a stepmotor, achieving a very stable source of UV
pulses (power and count-rate fluctuations less than 1%–2%
over 30 h). The UV pulses are focused onto a 2-mm-thick
�-barium borate (BBO) type-II crystal, cut for collinear
SPDC. Dichroic mirrors separate the down-converted pho-
tons from the UV pump, and a compensator erases walk-
off effects. We use high-transmittivity interference filters
(�� ¼ 3 nm) to spatially and spectrally select the photons,
which are coupled to a single-mode fiber guiding them to
the Dicke setup of Fig. 1(a). At 1.4 W of UV pump power,
we observe �0:003 six-photon Dicke states per second.
Higher power increases the sixfold rate while decreasing
the fidelity due to undesired detection events from higher-
order SPDC emissions [17].
State characterization.—In order to detect the presence

of genuine multipartite entanglement (GME) in our experi-
mental states, i.e., quantum entanglement shared by all the
particles involved, we use collective-spin inequalities [9].
Various entanglement witnesses have been found to be well
suited to the class of Dicke states [8]. They are experimen-
tally appealing, due to the small number of local measure-
ment settings (LMSs) required, in stark contrast to their
more demanding projector-based counterparts. We start
with the collective-spin witness hW sif ¼ hJ2x þ J2yif,
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where f refers to the state over which the expectation value

is calculated. Here, Ji ¼ 1
2

P
N
k¼1 �

ðkÞ
i (i ¼ x, y, z) are

collective-spin operators of N qubits with label k, and

�ðkÞ
i denotes the i Pauli operator. By using the techniques

described in Ref. [18], it can be seen that for any six-qubit
biseparable (bs) state hW sibs � 11:02, so that hW sif >
11:02 will detect the presence of GME in f. However, due
to the nonideal two-qubit correlations upon which W s

depends [shown in Figs. 2(a) and 2(b) for hJ2xi and hJ2yi],
our experimental state %ð3Þ

6 gives hW si
%ð3Þ
6

< 11:02. To

obtain a witness that detects GME for a nonideal state,
we insert a term proportional to J2z , for which hJ2z iDð3Þ

6

¼ 0.

This gives the more general witness W sð�Þ ¼ J2x þ J2y þ
�J2z (� 2 R). We then search for values of � such that
hW sð�Þi

%ð3Þ
6

> hW sð�Þibs. In Fig. 2(c) we show the two-

qubit correlations for hJ2z i%ð3Þ
6

, which contribute to hW sð�Þi
shown in Fig. 1(b). A range of � exists where
hW sð�Þi

%ð3Þ
6

> hW sð�Þibs: the gap is optimized at � ¼
�3, where hW sð�Þimax

bs � hW sð�Þi
%ð3Þ
6

¼ �0:24� 0:06,

thus confirming GME for our experimental state.

We now further probe the features of %ð3Þ
6 and consider

the multiphoton correlator C�Ni;j ð�Þ¼ ðcos��iþsin��jÞ�N .
This allows the sampling of N-photon correlations in or-

thogonal planes of the single-qubit Bloch sphere, providing
important information about the off-diagonal elements of
the density matrix and thus its coherence properties. One
finds hC�6i;z ð�ÞiDð3Þ

6

¼ ½3 cosð2�Þ þ 5 cosð6�Þ�=8, for i ¼ x,

y. Only the coherences within the Dicke state are respon-
sible for the interference between the trigonometric func-
tions in hC�6i;z ð�ÞiDð3Þ

6

[17,19]. In Figs. 2(h) and 2(i) we

compare the ideal coherence signature with that of %ð3Þ
6 ,

finding a reduced visibility. We also compare %ð3Þ
6 with the

behavior of the state �sim resulting from a detailed simu-
lation of our setup including multiple-pair emissions and
losses [17]. The simulated state spans a Hilbert-space
sector which is larger than the 26-dimensional space of

jDð3Þ
6 i. Moreover, the presence of spurious state compo-

nents in �sim affects the ideal populations and coherences,
as shown in Ref. [17]. The accuracy of the simulation
is confirmed by the behavior of hC�6i;j ð�Þi�sim

shown in

Figs. 2(h) and 2(i), revealing good agreement with our

data. Our analysis of %ð3Þ
6 is strengthened by evaluating

the state fidelity hF
Dð3Þ

6

i
%ð3Þ
6

, where the projector F
Dð3Þ

6

¼
jDð3Þ

6 ihDð3Þ
6 j is decomposed into 544 terms involving Pauli

operators, requiring 21 LMSs for their evaluation [20]. We
find hF

Dð3Þ
6

i
%ð3Þ
6

¼ 0:56� 0:02, which agrees well with the

value 0.61 from �sim. The small discrepancy is due to
slightly asymmetric fiber coupling of jH or Vi due to
SPDC birefringence. The setup performances are thus
limited by noise from higher-order emissions [17].
Despite such clearly consistent results, the measured fidel-
ity prevents us from unambiguously claiming that our
generated state is Dicke-class [21]. As full state tomogra-
phy is experimentally prohibitive, we complement the
fidelity analysis with additional characterization tools.

FIG. 2 (color online). Experimental study of the six-photon

Dicke state �ð3Þ
6 . (a)–(c) Correlations h�ðjÞ

i �ðkÞ
i i for qubit pairs (j,

k) (i ¼ x, y, z) for hW sð�Þi. Dashed lines are ideal values. (d),
(e), and (g) Coincidences for photons measured in j�i ¼ ðjHi �
jViÞ= ffiffiffi

2
p

, jL or Ri ¼ ðjHi � ijViÞ= ffiffiffi
2

p
, and jH or Vi (rescaled).

(f) Ideal populations for (d) and (e). (h) and (i) Multiphoton
correlations. Dashed (solid) lines are the patterns of hC�6x=y;zð�Þi
for jDð3Þ

6 i (�sim). The dots are experimental points.

FIG. 1 (color online). (a) Setup for generating the six-photon

Dicke state jDð3Þ
6 i. Photons are distributed into modes 1,. . .,6 via

a 1-to-3 fiber coupler, followed by 50:50 BSs. The expected
probability to find one photon in each spatial mode, correspond-

ing to the state jDð3Þ
6 i, is p� 0:015. The fiber and BSs introduce

birefringence, compensated by fiber-squeezers and birefringent
crystals. State characterization is performed via polarization
analysis of sixfold coincidences by a quarter-wave plate
(QWP), a half-wave plate (HWP), and a polarizing beam splitter
(PBS), whose output ports are monitored by multimode fiber-
coupled single-photon detectors. Each detector signal enters a
coincidence logic that records multiphoton coincidences.
(b) Biseparability region (shaded) for hW sð�Þibs and experi-
mental point (predicted line) for hW sð�Þi

%ð3Þ
6

.
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We now explore the nested structure of Dicke states and
their persistence of entanglement by conditionally gener-
ating four- and five-photon entangled states via projections

of jDð3Þ
6 i [11,22]. For example, by measuring one photon in

jHi, the five-photon state jDð2Þ
5 i [16] is projected out. This

state is equivalent to ��5
x jDð3Þ

5 i, showing that navigation

through the Dicke class of states is possible via projections

and local operations. Indeed, one can write jDðmÞ
N i ¼

ðCm
NÞ�1=2½ðCm�1

N�1Þ1=2jHijDðm�1Þ
N�1 i þ ðCm

N�1Þ1=2jVijDðmÞ
N�1i�

and navigate as shown in Fig. 3(m). We start by experi-

mentally projecting out the five-photon state %ð2Þ
5 in modes

2,. . .,6 [Figs. 3(a)–3(f) show the experimental data]. For
five-qubit states we have hW sibs � 7:87 [18], giving
hW simax

bs � hW si
%ð2Þ
5

¼ �0:21� 0:04, thus detecting

GME. To check consistency, we also projected photon 6
in jHi, finding hW simax

bs � hW si
%ð2Þ
5

¼ �0:32� 0:02.

Next, we project out the four-photon Dicke state jDð2Þ
4 i

[16] by measuring one photon in jHi and another in jVi.
Using hW sibs � 5:23 [8], the correlations for the experi-

mental state %ð2Þ
4 in modes 3,. . .,6 [shown in Figs. 3(g)–3(l)]

give hW simax
bs � hW si

%ð2Þ
4
¼ �0:16� 0:07, thus detecting

GME. Moreover, we have evaluated the state fidelity
hF

Dð2Þ
4

i
%ð2Þ
4

¼ 0:66� 0:05 using 9 LMSs [23]. We complete

our study of four-photon Dicke states by assessing a four-

photon W state jDð1Þ
4 i (equivalent to ��4

x jDð3Þ
4 i), generated

from jDð3Þ
6 i upon measurement of two photons in jHi.

Experimentally, we project the state %ð1Þ
4 into modes

3,. . .,6 [coincidence counts shown in Figs. 4(a)–4(d)].

Although jDð1Þ
4 i does not exceed hW simax

bs , for our experi-

mental state we find hW simax
bs � hW si

%ð1Þ
4
¼ �0:2� 0:1

due to hJ2x;yi being slightly larger than their ideal values,

thus detecting GME. We further characterize %ð1Þ
4 by eval-

uating hF
Dð1Þ

4

i
%ð1Þ
4

¼ 0:62� 0:02, using 7 LMSs [24].

Finally, a state locally equivalent to jGHZ4i ¼ ð1= ffiffiffi
2

p Þ�
½jHi�4 þ jVi�4� can also be generated from jDð3Þ

6 i
by measuring one photon in jþi and another in j�i.
Ideally, this produces ðjDð1Þ

4 i � jDð3Þ
4 iÞ= ffiffiffi

2
p �

�ð1Þ
z ðH ffiffiffiffiffiffi

�z
p Þ�4jGHZ4i (H is the Hadamard gate). The

state fidelity (using 5 LMSs) is hFGHZ4
i%GHZ

¼ 0:56�
0:02, giving a projector-based witness value of hW iGHZ ¼
�0:06� 0:02 [24], thus confirming GME.
Quantum protocols.—Despite the nonideal value of the

state fidelity, the symmetries within our six-photon re-
source make it suitable for several key quantum-
networking protocols [11,14], some of which have been
demonstrated in four-photon settings. Tracing out N � 2
qubits, one finds the two-photon state � ¼ �Njcþi�
hcþj þ ð1� �NÞ½jHHihHHj þ jVVihVVj�=2 with �N ¼
N=½2ðN � 1Þ� for N 	 4 [9] and jc�i ¼ ðjHVi �
jVHiÞ= ffiffiffi

2
p

. Here, the maximal singlet fraction Fmsf [25],
given by the maximum of hFc�i under local operations and
classical communication, helps in assessing the usefulness
of � for networking tasks. We consider using � as a tele-
portation channel [11,14], where the maximum fidelity
achievable for teleporting an arbitrary state is Fmax ¼
ð2Fmsf þ 1Þ=3. For jDðN=2Þ

N i, Fmsf ¼ �N; thus Fmax ¼
2N�1
3ðN�1Þ . Figure 4(e) shows Fmax for all pairs of photons

from %ð3Þ
6 and the ideal value 0.73 (upper dashed line). As

any photon pair in jDð3Þ
6 i provides a channel for teleporta-

tion, regardless of operations applied to the others, one can

FIG. 3 (color online). Experimental data for the Dicke states

%ð2Þ
5 and %ð2Þ

4 . (a) and (b) [(g) and (h)] Correlations h�ðjÞ
i �ðkÞ

i i for
qubit pairs (j, k) of %ð2Þ

5 (%ð2Þ
4 ), with i ¼ x, y. (c)–(e) [(i)–

(k)] Coincidences for the five (four) photons measured in
jH or Vi, j�i, and jL or Ri. (f) [(l)] Ideal populations for j�i
and jL or Ri. (m) Navigating the Dicke class by measurement.

FIG. 4 (color online). Experimental data for the W state %ð1Þ
4 .

(a)–(c) Coincidence counts for %ð1Þ
4 in the rescaled jH=Vi, j�i,

and jL=Ri bases. (d) Ideal populations for (b) and (c).
(e) Maximum achievable fidelity Fmax using pair (i, j) as a
channel. The upper (lower) line shows the ideal (classical) value.
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use it for telecloning [11–13]. The fidelity limit for uni-
versal symmetric 1 ! ðN � 1Þ cloning is exactly Fmax

[13]; thus jDðN=2Þ
N i is an ideal resource for this task.

Following [12], we have evaluated the protocol using

%ð3Þ
6 : Fig. 4(e) shows that the maximum cloning fidelity

achievable is consistently above the classical threshold of
2=3 [13]. A perfect jcþi channel for teleportation can be
created, with success probability �N , if N � 2 photons are

measured out of jDðN=2Þ
N i in the jH=Vi basis. This is in

contrast to telecloning, where the photons are traced out,
resulting in an imperfect channel with fidelity hFcþi� ¼
�N . As the core operation needed for telecloning com-
mutes with the jH or Vi measurements, one can choose
between telecloning and teleportation [11], with the suc-
cess probability to teleport to any one party given by ps ¼
�N 	 1

2 . Thus jDð3Þ
6 i can be used for open-destination tele-

portation [11,14]. For %ð3Þ
6 we find a mean value �ps ¼

0:55� 0:02 very close to the ideal ps ¼ 0:6. As an ex-
ample, we choose photons 5 and 6, finding a mean fidelity
h �Fcþi�exp

¼ 0:71� 0:02.

Finally, jDðN=2Þ
N i can also be used for multiparty quantum

secret sharing [15], where entanglement ensures that all
parties must cooperate in order to obtain a shared secret.
The trick is to exploit the perfect correlations in the maxi-
mally conjugate bases of �x;y. Using hC�Ni;j ð�Þi, we get

h��N
x;y iDðN=2Þ

N
¼ 1. Consider the �x basis and xj 2 f0; 1g as

the measurement outcome for the jth photon. If photon 1 is
measured, the value of x1 can only be recovered via x1 ¼

N
i¼2xi (
 denotes mod-2 addition), implying cooperation

of parties 2; . . . ; N. As jDðN=2Þ
N i is symmetric, this applies to

any choice for the initial party. The same holds for the �y

basis. When the parties announce their (randomly chosen)
bases, a shared key can be distributed [15], with which a
designated party encodes the secret. Any set of less than
N � 1 parties cannot recover the key, and although subsets
of parties can exist with partial information about x1 (for
instance), any such bias is removable by postprocessing
[15,26]. We thus evaluated the expected quantum bit error
rate of the generated key (before postprocessing), given by
the average error rate of the �x;y bases. We find 25� 2%

and 29� 1% for N ¼ 4 (415 shared bits) and N ¼ 6 (889
shared bits), respectively, over an 82 h period.

Remarks.—We have demonstrated a linear-optics setup
able to produce various states from the Dicke class and
characterized their properties using new methods. We also
evaluated the potential of our six-photon state for multi-
party quantum networking. Our work significantly extends
the range of attainable quantum states and paves the way
toward the experimental study of other six-qubit entangled
states [6] (and larger ones) and their use in quantum-
information processing.
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Integrated Project Qubit Application, EMALI, and the
U.S. Army Research Funded IARPA.

[1] R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009).
[2] D.M. Greenberger et al., Am. J. Phys. 58, 1131 (1990).
[3] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

(2000).
[4] H. J. Briegel et al., Nature Phys. 5, 19 (2009).
[5] D. Bouwmeester et al., Phys. Rev. Lett. 82, 1345 (1999);

M. Eibl et al., ibid. 90, 200403 (2003); Z. Zhao et al.,
Nature (London) 430, 54 (2004); H. Häffner et al., ibid.
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