431 research outputs found

    New Perspective on the Optical Theorem of Classical Electrodynamics

    Full text link
    A general proof of the optical theorem (also known as the optical cross-section theorem) is presented that reveals the intimate connection between the forward scattering amplitude and the absorption-plus-scattering of the incident wave within the scatterer. The oscillating electric charges and currents as well as the electric and magnetic dipoles of the scatterer, driven by an incident plane-wave, extract energy from the incident beam at a certain rate. The same oscillators radiate electro-magnetic energy into the far field, thus giving rise to well-defined scattering amplitudes along various directions. The essence of the proof presented here is that the extinction cross-section of an object can be related to its forward scattering amplitude using the induced oscillations within the object but without an actual knowledge of the mathematical form assumed by these oscillations.Comment: 7 pages, 1 figure, 12 reference

    A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli

    Get PDF
    Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB)

    CREEP IN STOICHIOMETRIC BETA NiAl.

    Full text link

    Fractional Klein-Kramers equation for superdiffusive transport: normal versus anomalous time evolution in a differential L{\'e}vy walk model

    Full text link
    We introduce a fractional Klein-Kramers equation which describes sub-ballistic superdiffusion in phase space in the presence of a space-dependent external force field. This equation defines the differential L{\'e}vy walk model whose solution is shown to be non-negative. In the velocity coordinate, the probability density relaxes in Mittag-Leffler fashion towards the Maxwell distribution whereas in the space coordinate, no stationary solution exists and the temporal evolution of moments exhibits a competition between Brownian and anomalous contributions.Comment: 4 pages, REVTe

    Normal modes of a small gamelan gong

    Get PDF
    © 2014 Acoustical Society of America. Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. A finite-element model has been constructed and its predictions for normal modes compared with experimental results obtained using electronic speckle pattern interferometry. Agreement was reasonable in view of the lack of precision in the manufacture of the instrument. The results agree with expectations for an axially symmetric system subject to small symmetry breaking. The extent to which the results obey Chladni's law is discussed. Comparison with vibrational and acoustical spectra enabled the identification of the small number of modes responsible for the sound output when played normally. Evidence of non-linear behavior was found, mainly in the form of subharmonics of true modes. Experiments using scanning laser Doppler vibrometry gave satisfactory agreement with the other methods

    Gaussian random waves in elastic media

    Full text link
    Similar to the Berry conjecture of quantum chaos we consider elastic analogue which incorporates longitudinal and transverse elastic displacements with corresponding wave vectors. Based on that we derive the correlation functions for amplitudes and intensities of elastic displacements. Comparison to numerics in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure

    Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    Get PDF
    For fifty years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (RF) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure

    A new class of semiclassical wave function uniformizations

    Get PDF
    We present a new semiclassical technique which relies on replacing complicated classical manifold structure with simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield remarkable accuracy. We give several working examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures

    Charge Fluctuation Forces Between Stiff Polyelectrolytes in Salt Solution: Pairwise Summability Re-examined

    Full text link
    We formulate low-frequency charge-fluctuation forces between charged cylinders - parallel or skewed - in salt solution: forces from dipolar van der Waals fluctuations and those from the correlated monopolar fluctuations of mobile ions. At high salt concentrations forces are exponentially screened. In low-salt solutions dipolar energies go as R5R^{-5} or R4R^{-4}; monopolar energies vary as R1R^{-1} or lnR\ln{R}, where RR is the minimal separation between cylinders. However, pairwise summability of rod-rod forces is easily violated in low-salt conditions. Perhaps the most important result is not the derivation of pair potentials but rather the demonstration that some of these expressions may not be used for the very problems that originally motivated their derivation.Comment: 8 pages and 1 fig in ps forma

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio
    corecore