21,326 research outputs found

    Large-scale anisotropy in stably stratified rotating flows

    Get PDF
    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to 102431024^3 grid points and Reynolds numbers of 1000\approx 1000. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with k5/3\sim k_\perp^{-5/3}, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales

    Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations

    Get PDF
    We report results on rotating stratified turbulence in the absence of forcing, with large-scale isotropic initial conditions, using direct numerical simulations computed on grids of up to 4096^3 points. The Reynolds and Froude numbers are respectively equal to Re=5.4 x 10^4 and Fr=0.0242. The ratio of the Brunt-V\"ais\"al\"a to the inertial wave frequency, N/f, is taken to be equal to 4.95, a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global buoyancy Reynolds number R_B=ReFr^2=32, a value sufficient for some isotropy to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-scale dynamics, for which we find a spectrum compatible with the Bolgiano-Obukhov scaling, and confirm that the Froude number based on a typical vertical length scale is of order unity, with strong gradients in the vertical. Two characteristic scales emerge from this computation, and are identified from sharp variations in the spectral distribution of either total energy or helicity. A spectral break is also observed at a scale at which the partition of energy between the kinetic and potential modes changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous in the flow in the velocity and temperature fields, with local overturning events indicated by small Richardson numbers, and a small large-scale enhancement of energy directly attributable to the effect of rotation is also observed.Comment: 19 pages, 9 figures (including compound figures

    Molecular gas heating in Arp 299

    Get PDF
    Understanding the heating and cooling mechanisms in nearby (Ultra) luminous infrared galaxies can give us insight into the driving mechanisms in their more distant counterparts. Molecular emission lines play a crucial role in cooling excited gas, and recently, with Herschel Space Observatory we have been able to observe the rich molecular spectrum. CO is the most abundant and one of the brightest molecules in the Herschel wavelength range. CO transitions are observed with Herschel, and together, these lines trace the excitation of CO. We study Arp 299, a colliding galaxy group, with one component harboring an AGN and two more undergoing intense star formation. For Arp 299 A, we present PACS spectrometer observations of high-J CO lines up to J=20-19 and JCMT observations of 13^{13}CO and HCN to discern between UV heating and alternative heating mechanisms. There is an immediately noticeable difference in the spectra of Arp 299 A and Arp 299 B+C, with source A having brighter high-J CO transitions. This is reflected in their respective spectral energy line distributions. We find that photon-dominated regions (PDRs) are unlikely to heat all the gas since a very extreme PDR is necessary to fit the high-J CO lines. In addition, this extreme PDR does not fit the HCN observations, and the dust spectral energy distribution shows that there is not enough hot dust to match the amount expected from such an extreme PDR. Therefore, we determine that the high-J CO and HCN transitions are heated by an additional mechanism, namely cosmic ray heating, mechanical heating, or X-ray heating. We find that mechanical heating, in combination with UV heating, is the only mechanism that fits all molecular transitions. We also constrain the molecular gas mass of Arp 299 A to 3e9 Msun and find that we need 4% of the total heating to be mechanical heating, with the rest UV heating

    Space - Single Precision Cowell Trajectory Program

    Get PDF
    Single Precision Cowell Trajectory program - digital computer program for trajectory computatio

    SFPRO - Single Precision Cowell Trajectory Processor

    Get PDF
    Digital computer program for IBM 7094 computer to generate spacecraft tracking station calculation

    Radiative and mechanical feedback into the molecular gas of NGC 253

    Get PDF
    Starburst galaxies are undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling of the excited gas. With SPIRE on the Herschel Space Observatory we have observed the rich molecular spectrum towards the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed and together with low-J line fluxes from ground based observations, these lines trace the excitation of CO. By studying the CO excitation ladder and comparing the intensities to models, we investigate whether the gas is excited by UV radiation, X-rays, cosmic rays, or turbulent heating. Comparing the 12^{12}CO and 13^{13}CO observations to large velocity gradient models and PDR models we find three main ISM phases. We estimate the density, temperature,and masses of these ISM phases. By adding 13^{13}CO, HCN, and HNC line intensities, we are able to constrain these degeneracies and determine the heating sources. The first ISM phase responsible for the low-J CO lines is excited by PDRs, but the second and third phases, responsible for the mid to high-J CO transitions, require an additional heating source. We find three possible combinations of models that can reproduce our observed molecular emission. Although we cannot determine which of these are preferable, we can conclude that mechanical heating is necessary to reproduce the observed molecular emission and cosmic ray heating is a negligible heating source. We then estimate the mass of each ISM phase; 6×1076\times 10^7 M_\odot for phase 1 (low-J CO lines), 3×1073\times 10^7 M_\odot for phase 2 (mid-J CO lines), and 9×1069\times 10^6 M_\odot for phase 3 (high-J CO lines) for a total system mass of 1×1081\times10^{8} M_\odot

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page

    Induced Ge Spin Polarization at the Fe/Ge Interface

    Full text link
    We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-polarized {\it s} states at the Fermi level, as well as {\it d} character moments at higher energy, which are both oriented antiparallel to the moment of the Fe layer. Use of the sum rules enables extraction of the L/S ratio, which is zero for the {\it s} part and 0.5\sim0.5 for the {\it d} component. These results are consistent with layer-resolved electronic structure calculations, which estimate the {\it s} and {\it d} components of the Ge moment are anti-parallel to the Fe {\it 3d} moment and have a magnitude of 0.01μB\sim0.01 \mu_B.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
    corecore