423 research outputs found

    ONOS-Controlled Disaggregated Optical Networks

    Get PDF
    State-of-art, potentials and limitations of the ONOS controller applied to disaggregated optical networks are reported. Focus is on the on-going ODTN project. Results of experimental demonstrations are reported to prove the feasibility of proposed approach

    Experimental Evaluation of Dynamic Resource Orchestration in Multi-Layer (Packet over Flexi-Grid Optical) Networks?

    Get PDF
    This paper has been presented at : ONDM 2019 23rd Conference on Optical Network Design and ModellingIn future 5G infrastructures, network services will be de- ployed through sets of Virtual Network Functions (VNFs) leveraging the advantages of both Software Defined Networking (SDN) and Net- work Function Virtualization (NFV). A network service is composed of an ordered sequence of VNFs, i.e., VNF Forwarding Graph (VNFFG), deployed across distributed data centers (DCs). Herein, we present a Cloud/Network Orchestrator which dynamically processes and accom- modates VNFFG requests over a pool of DCs interconnected by a multi- layer (packet/flexi-grid optical) transport network infrastructure. We propose two different cloud and network resource allocation algorithms aiming at: i) minimizing the distance between the selected DCs, and ii) minimizing the load (i.e., consumed cloud resources) of the chosen DCs. Both algorithms run on a Cloud/Network Orchestrator and are ex- perimentally validated and benchmarked on the CTTC ADRENALINE testbed.This work is partially funded by the EU H2020 5G TRANSFORMER project (761536) and the Spanish AURORAS project (RTI2018-099178

    Experimental Evaluation of Orchestrating Inter-DC Quality-enabled VNFFG Services in Packet/Flexi-Grid Optical Networks

    Get PDF
    44th European Conference on Optical Communications (ECOC 2018)An implemented Cloud/Network Orchestrator to dynamically serve VNFFGs in remote DCs through a Multi-Layer Network (packet/flexi-grid optical) is evaluated. Two network information and path computation approaches are adopted by the Orchestrator being experimentally benchmarked with a number of performance metrics.This work is partially funded by the Spanish MINECO DESTELLO project (TEC2015-69256-R) and the EU H2020 5G TRANSFORMER project (761536)

    Latency-Aware Network Service Orchestration over an SDN-Controlled Multi-Layer Transport Infrastructure

    Get PDF
    In this paper, we present latency-aware orchestration strategies that jointly consider satisfying both the allocation of computing resources (in distributed DCs) and the bandwidth and latency networks requirements, which are experimentally evaluated within a Multi-Layer (Packet over Optical Flexi-Grid) Transport Network and considering different DC set-ups and capabilities.This work is partially funded by the EU H2020 5G TRANSFORMER project (761536)

    Latency-aware resource orchestration in SDN-based packet over optical flexi-grid transport networks

    Get PDF
    In the upcoming 5G networks and following the emerging Software Defined Network/Network Function Virtualization (SDN/NFV) paradigm, demanded services will be composed of a number of virtual network functions that may be spread across the whole transport infrastructure and allocated in distributed Data Centers (DCs). These services will impose stringent requirements such as bandwidth and end-to-end latency that the transport network will need to fulfill. In this paper, we present an orchestration system devised to select and allocate virtual resources in distributed DCs connected through a multi-layer (Packet over flexi-grid optical) network. Three different on-line orchestration algorithms are conceived to accommodate the incoming requests by satisfying computing, bandwidth and end-to-end latency constraints, setting up multi-layer connections. We addressed end-to-end latency requirements by considering both network (due to propagation delay) and processing delay components. The proposed algorithms have been extensively evaluated and assessed (via a number of figures of merit) through experimental tests carried out in a Packet over Optical Flexi-Grid Network available in the ADRENALINE testbed with emulated DCs connected to it.This work has been partially funded by the EC H2020 5GTransformer Project (grant No. 761536)

    Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip

    Get PDF
    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed

    Multi-partner Demonstration of BGPLS enabled multi-domain EON control and instantiation with H-PCE

    Get PDF
    The control of multidomain elastic optical networks (EONs) is possible by combining Hierarchical Path Computation Element (H-PCE)-based computation, Border Gateway Protocol with Extensions for Traffic Engineering Link State Information (BGP-LS) topology discovery, remote instantiation via Path Computation Element Communication Protocol (PCEP), and signaling via Resource Reservation Protocol with Extensions for Traffic Engineering (RSVP-TE). Two evolutionary architectures are considered, one based on stateless H-PCE, PCEP instantiation, and end-to-end RSVP-TE signaling (SL-E2E), and a second one based on stateful active H-PCE with per-domain instantiation and stitching. This paper presents the first multiplatform demonstration that fully validates both control architectures achieving multiprotocol interoperability. SL-E2E leads to slightly faster provisioning but needs to keep the state of the stitching of the end-to-end label-switched paths in the parent PCE
    • …
    corecore