2,615 research outputs found
Light flash phenomena induced by HzE particles
Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described
Longwall shearer tracking system
A tracking system for measuring and recording the movements of a longwall shearer vehicle includes an optical tracking assembly carried at one end of a desired vehicle path and a retroreflector assembly carried by the vehicle. Continuous horizontal and vertical light beams are alternately transmitted by means of a rotating Dove prism to the reflector assembly. A vertically reciprocating reflector interrupts the continuous light beams and converts these to discrete horizontal and vertical light beam images transmitted at spaced intervals along the path. A second rotating Dove prism rotates the vertical images to convert them to a second series of horizontal images while the first mentioned horizontal images are left unrotated and horizontal. The images are recorded on a film
Architectural assessment of mass storage systems at GSFC
The topics are presented in viewgraph form and include the following: system functionality; characteristics; data sources; hardware/software systems; and performance assessments
A genetic classification of the tholeiitic and calc-alkaline magma series
The concept of the ‘magma series’ and the distinction between alkaline, calc-alkaline and tholeiitic trends has been a cornerstone in igneous petrology since the early 20th century, and encodes fundamental information about the redox state of divergent and convergent plate tectonic settings. We show that the ‘Bowen and Fenner trends’ that characterise the calc-alkaline and tholeiitic types of magmatic environments can be approximated by a simple log ratio model based on three coupled exponential decay functions, for A = Na2O + K2O, F = FeOT and M = MgO, respectively. We use this simple natural law to define a ‘Bowen-Fenner Index’ to quantify the degree to which an igneous rock belongs to either magma series. Applying our model to a data compilation of igneous rocks from Iceland and the Cascade Mountains effectively separates these into tholeiitic and calc-alkaline trends. However the simple model fails to capture the distinct dog-leg that characterises the tholeiitic log ratio evolution, which can be attributed to the switch from ferrous to ferric iron-bearing minerals. Parameterising this switch in a two stage magma evolution model results in a more accurate fit to the Icelandic data. The same two stage model can also be fitted in A–T–M space, where ‘T’ stands for TiO2. This produces a new way to identify calc-alkaline and tholeiitic rocks that does not require the conversion of FeO and Fe2O3 to FeOT. Our results demonstrate that log ratio analysis provides a natural way to parameterise physical processes that give rise to these magma series
A 33 year constancy of the X-ray coronae of AR Lac and eclipse diagnosis of scale height
Extensive X-ray and extreme ultraviolet (EUV) photometric observations of the
eclipsing RS CVn system AR Lac were obtained over the years 1997 to 2013 with
the Chandra X-ray Observatory Extreme Ultraviolet Explorer. During primary
eclipse, HRC count rates decrease by ~40%. A similar minimum is seen during one
primary eclipse observed by EUVE but not in others owing to intrinsic source
variability. Little evidence for secondary eclipses is present in either the
X-ray or EUV data, reminiscent of earlier X-ray and EUV observations. Primary
eclipses allow us to estimate the extent of a spherically symmetric corona on
the primary G star of about 1.3Rsun, or 0.86Rstar, and indicate the G star is
likely brighter than the K component by a factor of 2-5. Brightness changes not
attributable to eclipses appear to be dominated by stochastic variability and
are generally non-repeating. X-ray and EUV light curves cannot therefore be
reliably used to reconstruct the spatial distribution of emission assuming only
eclipses and rotational modulation are at work. Moderate flaring is observed,
where count rates increase by up to a factor of three above quiescence.
Combined with older ASCA, Einstein, EXOSAT, ROSAT and Beppo-SAX observations,
the data show that the level of quiescent coronal emission at X-ray wavelengths
has remained remarkably constant over 33 years, with no sign of variation due
to magnetic cycles. Variations in base level X-ray emission seen by Chandra
over 13 years are only ~10%, while variations back to pioneering Einstein
observations in 1980 amount to a maximum of 45% and more typically about 15%.Comment: To appear in the Astrophysical Journa
Time-resolved two-dimensional imaging of ground-state species using laser-induced fluorescence
Laser-induced fluorescence has been employed to obtain two-dimensional images of the spatial distribution of a vapor in the ground state with nanosecond resolution. The method has a wide range of potential applications, as it can be used to observe any species which has energy levels accessible to tunable laser systems. In the application we describe, aluminum vapor was observed jetting from spark gap electrodes and diffusing throughout the gap volume
Elastodynamics of radially inhomogeneous spherically anisotropic elastic materials in the Stroh formalism
A method is presented for solving elastodynamic problems in radially
inhomogeneous elastic materials with spherical anisotropy, i.e.\ materials such
that in a spherical coordinate system
. The time harmonic displacement field is expanded in a separation of variables form with dependence on
described by vector spherical harmonics with -dependent
amplitudes. It is proved that such separation of variables solution is
generally possible only if the spherical anisotropy is restricted to transverse
isotropy with the principal axis in the radial direction, in which case the
amplitudes are determined by a first-order ordinary differential system.
Restricted forms of the displacement field, such as ,
admit this type of separation of variables solutions for certain lower material
symmetries. These results extend the Stroh formalism of elastodynamics in
rectangular and cylindrical systems to spherical coordinates.Comment: 15 page
Solving the liar detection problem using the four-qubit singlet state
A method for solving the Byzantine agreement problem [M. Fitzi, N. Gisin, and
U. Maurer, Phys. Rev. Lett. 87, 217901 (2001)] and the liar detection problem
[A. Cabello, Phys. Rev. Lett. 89, 100402 (2002)] is introduced. The main
advantages of this protocol are that it is simpler and is based on a four-qubit
singlet state already prepared in the laboratory.Comment: REVTeX4, 4 page
Effects of Two Toxin-Producing Harmful Algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on Activity and Mortality of Larval Shellfish
Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species or their associated toxins on shellfish. This study investigated A. catenella and D. acuminata toxicity in a larval oyster (Crassostrea virginica) bioassay. Larval activity and mortality were examined through 96-h laboratory exposures to live HAB cells (10–1000 cells/mL), cell lysates (1000 cells/mL equivalents), and purified toxins (10,000 cells/mL equivalents). Exposure to 1000 cells/mL live or lysed D. acuminata caused larval mortality (21.9 ± 7.0%, 10.2 ± 4.0%, respectively) while exposure to any tested cell concentration of live A. catenella, but not lysate, caused swimming arrest and/or mortality in \u3e50% of larvae. Exposure to high concentrations of saxitoxin (STX) or okadaic acid (OA), toxins traditionally associated with PSP and DSP, respectively, had no effect on larval activity or mortality. In contrast, pectenotoxin-2 (PTX2) caused rapid larval mortality (49.6 ± 5.8% by 48 h) and completely immobilized larval oysters. The results indicate that the toxic effects of A. catenella and D. acuminata on shellfish are not linked to the primary toxins associated with PSP and DSP in humans, and that PTX2 is acutely toxic to larval oysters
- …